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* Ekinocs research team
— Machine Learning for

* Life science

Bioinformatics

e Agriculture
Satellite image analysis: monitoring changes in the land uses
Control of irrigation

Predicting late frost

 Nutrition

Changing the consumers habits to turn from the consumption of animal
proteins to the consumption of vegetal ones
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Human activity recognition

* Recognize what they are doing as fast as possible
but with a high accuracy

Are they

* Playing?
* Fighting?
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Supervised learning

* From a training set

f
=
S = {1,962 ¥ s (K Vi s i Y}
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Supervised learning

* From a training set

S {(X1 y1) X2 y2) ’(X[’yi)’ et (Xm’ ym)}

* Learn a function from the input space X to the output space Y

X—h->y
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From a training set

Cat or dog?
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Dog
or
muffin?
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One example that tells a lot ...

 Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

* They belong either to class ‘+’ or to class -
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class -’

Tech

Description

Your answer

True answer

1 large red square
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class -’

Tech

Description

Your answer

True answer

1 large red square

1 large green square

2 small red squares
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class -’

Tech
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Your answer

True answer
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Avgfo

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class -’

Tech

Description

Your answer

True answer

1 large red square

1 large green square

2 small red squares

2 large red circles

1 large green circle
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Avgfo

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class -’

Tech

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
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Avgfo

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class -’

Tech

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +

1 small red circle
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Avgfo

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class -’

Tech

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +
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* When would you be certain about your guess?
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One example that tells a lot ...

 Examples described using:
Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

ero

Description

Your prediction

True class

1 large red square

1 large green square

2 small red squares

2 large red circles

1 large green circle

1 small red circle

How many possible functions altogether from Xto Y ?

How many functions do remain after 9 training examples?

Tech

4
22 = 216 = 65,536
2> = 32
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Induction: an impossible game?

e A bias is need
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Induction: an impossible game?

e A bias is need

* Types of bias

-
-
-
-
-
-
-
-
-

— Representation bias (declarative)
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Induction: an impossible game?

e A bias is need

* Types of bias

-
-
-
-
-
-
-
-
-

— Representation bias (declarative)

— Research bias _ (procedural)

5
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Interpretation — completion of percepts
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Interpretation — completion of percepts
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Interprétation — complétion de percepts
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Optical illusions
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Induction and its illusions

lllustration

/123
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Back to time series
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Time Series
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[Vijay, R. K., & Nanda, S. J. (2023). Earthquake pattern analysis using subsequence time series clustering. Pattern

Analysis and Applications, 26(1), 19-37.]
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Classification of Time Series

Suppose:
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Characteristiques

e We will be interested in real valued time series

— Stock market values, electrical consumption, temperature, ...

e Univariate vs. Multivariate

— Electrocardiogram vs. Electroencephalogram .

* Periodic sampling vs. Irregular sampling

— Stock market values vs. On-line purchases
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Univariate vs. multivariate

Single instance
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Lots of phenomena are temporal
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Lots of applications involve identifying the class of the phenomenon

(i.e. the class of the time series)
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Prosopagnosia

Experimental Paradigm
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 Can we identify from the IRM measurements whether the

patient suffers from prosopagnosia or not?
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ECG signals

ECGFiveDays class one

ECGFiveDays class two

Amplitude

Amplitude

Time

(¢) ECGFiveDays class one (d) ECGFiveDays class two

Terefe, T., Devanne, M., Weber, J., Hailemariam, D., & Forestier, G. (2023). Estimating time series averages

from latent space of multi-tasking neural networks. Knowledge and Information Systems, 65(11), 4967-5004.
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Human activity recognition

* NTU

A'gro Tech 42 /123



Human activity recognition

Same class?!

Reading Writing

Articulated pose alone is not sufficient
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Human activity recognition

Measurements on the joints
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Classification of time series

x(t) 4 Training set

—
.
T

* Monitoring of consumer actions on a web site: will buy or not

* Monitoring of a patient state: critical or not

* Evening electrical consumption (prediction each day at 6pm): high or low
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Standard classification of time series

* What is the class of the new time series x;?

x(t) 4
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1. Representing the time series

* Periodic sampling of the time series

xa(t)

»
>

1
~5T 4T 317 2T -T 0 T 2T 3T 4T 5T f

* As a set of shapelets

Shgr;elet ___IG(max) . ,N\ \,J \M T /\/M/Vvw

S1 S2 Sr  Class

Shapelet __ 1G(max-1) fw \
S2 TS, distrgqgy distrgygp * o+ e distrgise A
Shapelet IG(max -2) . . .
s3 Tttt \TSZ dIStT3251 dISthzsz tece dlStTSZSr A =G

Shapelet ____IG(max-3) : :
S4 . . .
. TS, @tTSn& distrsnsz * =+ = distrsnse B/
G (min) \/WW*‘“\

Shapelet
Sr

Arul, M., & Kareem, A. (2021). Applications of shapelet transform to time series

) classification of earthquake, wind and wave data. Engineering Structures, 228, 111564.
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1. Representing the time series

This module contains the feature calculators that
tsfresh.feature_extraction.feature_calculators take time series as input and calculate the values

* Computing new descriptors of the eature

The following list contains all the feature calculations supported in the current version of tsfresh:

— tsfresh (scikit-learn)

Returns the absolute energy of the
abs_energy (x) time series which is the sum over the

* \ector of 76 values squared values

Calculates the highest absolute value

absolute_maximum (X) T Ay e

* Independent of the
Returns the sum over the absolute

|e ngth Of th e TS absolute_sum_of_changes (X) Z::'lijeic)’(f consecutive changes in the

. Descriptive statistics on the

a autocorrelation (X, param 3 5 .
99- b p ) autocorrelation of the time series.

Calculates a linear least-squares

regression for values of the time

agg_linear_trend (X, param) series that were aggregated over

—_— Ot h e r | i b ra r‘i e S chunks versus the sequence from O up

to the number of chunks minus one.

Implements a vectorized Approximate

approximate_entropy (X, m,r) A
° Rocket entropy algorithm.
This feature calculator fits the
° M i n i Rocket ar_coefficient (X, param) unconditional maximum likelihood of

an autoregressive AR(k) process.
augmented_dickey_fuller (X, param) Does the time series have a unit root?

Calculates the autocorrelation of the
autocorrelation (X, lag) specified lag, according to the formula
(1]

Useful for anomaly detection
applications [1][2]. Returns the
correlation from first digit distribution
when

benford_correlation (X)

76 new descriptors (nov. 2023)
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Libraries

* Libraries of functions that code time series into sets of features

— Barandas M, Folgado D, Fernandes L, Santos S, Abreu M, Bota P, Liu H,
Schultz T, Gamboa H (2020) Tsfel: Time series feature extraction library.

SoftwareX 11:100456,
https://github.com/fraunhoferportugal/tsfel
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2. Classifying the time series

e Distance-based methods
— E.g. kNN

— Needs a distance

e Euclidian
* Time Warping

 Decomposition-based (dictionary approaches)

— Choosing a set of descriptors
* E.g. Fourier functions, shapelets, ...

— Representing the time series as vectors of descriptors

— Using all methods based on vectors

* SVM
* Decision trees

eroParisTech 50 /123
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2. Classifying the time series

 Deep neural networks

input time K
series ‘-.\)output

_ fully
i \ f / average connected
time i
residual pooling
: connections

Figure 11: InceptionTime architecture. The InceptionTime artificial neural
network consists of several Inception modules with residual connections, followed by

a global average pooling layer and a fully connected layer. Reproduced from (Is-
mail Fawaz et al, 2020).
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2. Classifying the time series

* Single classifiers
— XGBoost

e Generally a very good choice

— Neural Networks

e Ensemble of classifiers

— HIVE-COTE

 a collection of classification models that each perform their own class
discrimination on the data set

e Take the majority vote
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Classification function

Training a collection of time-indexed classifiers

Training a single classifier
* The most used in the literature.

Building a collection of truncated datasets

a0 o o

-s0q

mmmmmmm

Independent features extraction (or representations)
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features Eae Or learning a representation (deep)
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Standard classification of time series

* What is the class of the new time series x;?

x(t) 4
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Early classification of time series

 What is the class of the new incomplete time series x,?

x(t) 4

.
.
.
.
.
'
.
~~ '
/s N\ '
/ \ -
/ \ //’ T\
/ \ FEREN Ve ' N ]
/ \ - = N 4 . N—
Vi \ - ~ N\ 7 > 7 \\ -~
2 \ .=~ 0 - ~ 4 -~ a4 N
o ~ < ) /\ \ \
/ \ \ -~
/ N\ ~ 7 ~
-— ~
~ WY ~
\‘\ N~ \ “ N - _-"
_- \‘\\\_\\/ A \\ e S
s A ;N s, -7\ -
IS N Y M_oz=zZ _ -
- \ - - ==\ =< _
: D S NI R ST >R~
- = - -_- ~ .
DN UTRES S K %7
DN / Y 20 ST N7
AN v - ~ - %
: N T N TN
. AN SN ~ee_ -7/
VN L 4 /,\ ~ \ Vs oy \ ' \ N / \ RN /
/ N s \ ~ \ s s N “ \ - \ 7 N ’
s, \ ~ v , e N sTs s \N_7 N ,
- , N >’ ~ s N ~ So -
- P S PRENA s s v e -<
7 ~ = ~ Pl 7 \ - -~ o -
N \ s o _~- 7 Bl i S
\\ Vi - \ 'l \ ~ =~
7’ s U ~ ~
~ - \ - o S~o S —--"
N - ' -
-_ 0 ~
' ~
.
.
.
. —P
.
.

~

eroParisTech 56 /123



Early human activity recognition

Measurements on the joints
2500 §
e I———
3000:1 l I ' !!!!!! - !

===

] w
2000 Lp$=.=ﬂ!

2500j _} -

4008 7=
2000 .| hi

7688 1 , —
2500j +l . — e :
250 ﬁ :

M
i ==
4860

Reading

L 18

2000 4 Ii .
2500 + —— 1—

O 20000 40000 60000

Writing

eroParisTech 57 /123
a———



Applications

* Decide chirurgical operation
— Do not operate if not necessary

— But, the earliest the decision, the better the outcome
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Applications

* Decide chirurgical operation
— Do not operate if not necessary

— But, the earliest the decision, the better the outcome

* Predictive maintenance

— Early maintenance is unnecessarily costly

— But, waiting too long can be very costly
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Applications

* Decide chirurgical operation
— Do not operate if not necessary

— But, the earliest the decision, the better the outcome

* Predictive maintenance

— Early maintenance is unnecessarily costly

— But, waiting too long can be very costly

* Decide operation only with enough certainty

* Do not wait too long before taking decision
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New decision problems: early classification

* A trade-off

— Classification performance (better if t / )

— Cost of delaying prediction (betterift ™\ )
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Formalization
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How would you approach the problem?
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Trigger-model

Classifier

A
Xt
:> hi(X) :> f(he(X))
? ®

| |
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A natural approach: confidence-based

1. Input=x attimestept
2. Compute the confidence of the prediction h(x))

3. Make a prediction when confidence > threshold

Classifier Trlgger model

{ |:{> he(Xo) |:fl> f(he(X0))

2«
L

' D =
{ 0 if max(p(y|X+)) <7

1 otherwise
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A natural approach: confidence-based

Question: How to set the threshold?
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A natural approach: confidence-based

 The threshold is a parameter that is optimized on a training set
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Experimental setting

e Data sets

— The UCR archive for time series classification: 77 data sets

e C(Classifier
— MiniRocket
e Performance Number of test data sets
1 M
AvgCost = MZC”” (Ui |yi) +Cd(t)
1=1

/

Misclassification cost

Cn(@ly) : Y xY—=>R Cyq(t): RT - R
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Misclassification cost

P, P.
True class
Predicted class + -
+ 0 cost =10
- cost=5 0
Cost matrix

69
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P+

True class
* Misclassification cost Predicted class + -
+ 0 cost =10
- cost=5 0
* Expected misclassification cost Cost matrix
True class
Predicted class + -
+ =0.82 =0.23
- =0.18 =0.77
Confusion matrix of the classifier at time t
70
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* Misclassification cost

* Expected misclassification cost

True class

Predicted class + -
+ =0.82 =0.23
- =0.18 =0.77

Confusion matrix of the classifier at time t

P+ P_
True class
Predicted class + B
+ 0 cost =10
- cost=5 0
Cost matrix
t A~
E (7,y)EV? [Con(9¢|y)]

= (pg x 0.82 x 0) + (p— x 0.23 x 10)

+ (py x 0.18 x 5) + (p_ x 0.77 x 0)

= 3.2

71
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Delay cost Cy(t)

Often considered as linear with time

100 T
— a=0 — a=05
a=0.2 — a=028
801
Here, exponential costs
f§- 60 -
Z
S 401
20+
0. - T T
0.0 0.2 0.4 0.6 0.8 1.0

proportion seen of the time series
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A natural approach: confidence-based

* The threshold is a parameter that is optimized on a training set

— By minimizing the AvgCost on the training data sets

Number of test data sets
1 M
AvgCost = M;Cm Jily:) +Cd(t)

Misclassification cost
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Optimal decision time

* The time optimizing the tradeoff for a given time series

tr = ArgMin {C,,
te[1,T
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A more sophisticated confidence-based

The “stopping rule”

] 0 if ypr)+ y9p2]+ 147 |< 0
S (he(xt)) = { 1 otherwise

:
the largest posterior probability
estimated by the classifier

Reliability
the difference between the two largest
posterior probabilities

Earliness the proportion of the incoming time series

that is avallable at time « t »

Mori, U., Mendiburu, A., Dasgupta, S., & Lozano, J. A. (2017). Early classification of time series by simultaneously

optimizing the accuracy and earliness. IEEE transactions on neural networks and learning systems, 29(10), 4569-4578.
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Limits ...

e ... of the confidence-based methods
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Limits ...

e .. of the confidence-based methods?

— Do not take into account the costs !!!

Only indirectly in the optimization process
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Limits ...

Question: Can we find a decision

criterion that uses the costs?
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Cost-based methods

* For each time step t, compute the expected cost

Incoming time series at t

/

f(xe) = E{5 ey [Cm(@ly)lxe] + Cult)

\ J
|

/

Expectancy of the misclassification

cost making the prediction ¥ att

= Y Plylx) Y P@ly.xe) Con(gly) + Cult)

yey ‘@637
\

Expected misclassification cost for a given target y
A'grwoParisTech 79 /123
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* Okay, you have an expected cost at each time step

— And you want the time t* where it is minimal

But when would you stop?

* And make a prediction
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Learning Using Privileged Information

Inspired by learning at school

* Thegoalistolearnafunction h:X € X — y € {—1, —|—1}

e Suppose that at learning time there is more available information

than at test time /

St = {(X’ia X;Fa yz)}1§1§m
| X/ )

 Can we then improve the generalization performance

wrt. the one obtained with S only?

V. Vapnik and A. Vashist (2009) “A new learning paradigm: Learning using privileged information”.
oroParisTech  Neural Networks, vol. 22, no. 5, pp. 544-557, 2009 82 /123



Can you imagine applications where privileged information

could be available at training time (and not at testing time)?
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Learning Using Privileged Information

lllustration in computer vision

X .

image

2™ 1 attributes

black:
white:
brown:

water:
slow:

patches:

yes
yes
no
yes
no
yes

SRR,
zfﬁrﬂhkﬁqngxzzp

H%‘l{' 2 '\E>

T . image

Sambal crab, cah
kangkung and deep
fried gourami fish in
the Sundanese tra-
ditional restaurant.

V. Sharmanska, N. Quadrianto, and Ch. Lamper (2014) “Learning to transfer privileged

eroParisTech
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information”. ArXiv preprint arXiv:1410.0389, 2014
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Two general approaches to LUPI

* Learning a hypothesis in the “augmented” input space h X = Y

* Testing

1. 1stapproach:learn to “complete” the description in X

then use h’ X — X*

h X —y

2. 2" approach: project back h’, the learnt hypothesis

y y 8 /123
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Two general approaches to LUPI

* Learning a hypothesis in the “augmented” input space h X = Y

* Testing

1. 1stapproach:learn to “complete” the description in X

then use h’ X — X*

h X —y
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Early classification of time series

* What is the class of the new incomplete time series x,?

x(t)
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Early classification of time series

 What is the class of the new incomplete time series x,?

e A LUPIframework
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Early classification and LUPI

ing

This is a LUPI setti
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How to take advantage of th
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Principle

Ljy
Compute an “envelope” of the
likely continuations of the w
time series \-»\_\_\\_
: ' =
0 ¢ T
° Attimet

— Compute the expected cost for each future time step t+t (until 7)

— If at any future time t+71, the expected cost is lower than the current one,

defer decision
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Cost-based methods

* For each time step t, compute the expected cost

Incoming time series at t

/

f(xe) = E{5 ey [Cm(@ly)lxe] + Cult)

)

|

/

Expectancy of the misclassification

cost making the prediction ¥ att

= Y Plylx) Y P@ly.xe) Con(gly) + Cult)

yey yeyY
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fT(Xt) - Et:l_T

Probability of class y
given Xt

eroParisTech
T

Formalization

P(X¢4-|x¢) Z Pitr (D4 Ys Xt4r) Con (G- |y) dxeqr + Cull +7)

~ L, Y- €Y
LUPI
Over all possible Characteristics of the
continuations of X; classifier at time t+t
;
Xt I e
0 i T
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Formalization

o)) = BT e [Cunldly)] + Cult+7)

= ZPt(y‘Xt)/ P(x¢4-|x¢) Z Py (Gt 1Y, Xiqr) Con (U7 y) dxyqr + Cult +7)

Xt+T1 exX

yey N -~ L, Ut €Y
LUPI
Probability of class y Over all possible Characteristics of the
given X continuations of Xy classifier at time t+1

* A rather daunting equation

— But there are ways to simplify it

* Depending on how to estimate the likely continuations
— Economy_K

— Economy_y
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How it works

Achenchabe, Y., Bondu, A., Cornuéjols, A., & Dachraoui, A. (2021). Early classification of time
series: Cost-based optimization criterion and algorithms. Machine Learning, 110(6), 1481-1504.
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A non myopic decision process

* Optimal estimated time relative to currenttimet 7" = ArgMin f-(x¢)
7€{0,....,T—t}
X A _
t r
fr(xt)A

W Continue

m—> L
monitoring
0 T Tt
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A non myopic decision process

* Optimal estimated time relative to currenttimet 7" = ArgMin f-(x¢)
7€{0,....,T—t}

v

t+1 T
fT(Xt+1>
| Continue
e — L
monitoring
0 ™o
(t+1)
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A non myopic decision process

*

* Optimal estimated time relative to currenttimet 7" = ArgMin f-(x¢)
7€{0,....,T—t}

X 4

>

L9 T

Make
prediction
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7.

Outline

Introduction

Classification of time series: the standard setting

Early Classification of Times Series (ECTS)

A detour: the LUPI framework

Anticipation-based ECTS

Experiments and comparisons

Conclusions

eroParisTech
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Experiments: Controlled data

e Control of
— The time-dependent information provided: the slopes of the classes
— The shapes of time series within each class
— The noise level

x¢ = U xslope X class + Xmao sin(w; Xt + ;) +  7(t)

o

Vv N
information gain sub shape within class noise factor

Al5{w=%,¢=0.111=0.01,y=+1}

Ap i {w =281 »—=0,m=001,y=+1}

Clw=35.¢=5 .m=0,y==x1} By : {w= 105;8'“ o=0,m=-0.01,y=—1}

Bl:{w=%sk}9=0,m=—0.01,y=—1}

eroParisTech
-——
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Results: effect of the noise level

Increasing the noise
level increases the
waiting time, and then

it’s no longer worth it

eroParisTech

o) b 0.02 0.05 0.07
ety | 7 o(r*) AUC | 77 o(r*) AUC | 7 o(r") AUC
0.2 | 9.01 240 099 | 9.0 | 240 099 [10.0! 00  1.00
0.5 [13.0! 440 098 [13.0! 440 098 [15.0! 0.18  1.00
0.0l | 1.5 |24.0! 10.02 098 |32.0! 256 1.00 [30.0! 12.79 0.9
50 [26.07 7.78 084 |30.0 ;1891 0.87 [30.0} 19.14 0.88
10.0 38.0! 18.89  0.70 48.0! 1.79  0.74 46.0i 527  0.75
15.0 |23.01 15.88 0.61 [32.0113.88 0.64 |29.01 17.80 0.62
Voo | 70Y 899 052 |11.0Y11.38 055 | 4.0V 1.22  0.52
02 | 80 200 098 |80 200 098 |90 00  1.00
05 [10.0 280 096 | 80 40 098 |14.0 041  0.99
005 1.5 | 50 040 0.68 |20.0 042 095 |140 480 0.88
50 | 80 387 0.68 | 60 136 064 | 5.0 050 0.65
100 | 40 029 056 | 40 0.25 056 | 40 034 057
150 | 40 00 054 | 40 025 056 | 40 00 055
200 | 40 00 052 | 40 00 052 | 40 00  0.52
02 | 60 08 095 | 70 1.60 094 | 80 040  0.96
05 | 60 080 084 | 9.0 240 093 [100 00  0.95
010 15 | 40 00 067 | 50 043 068 | 60 080 0.74
50 | 40 007 0.64 | 40 0.05 064 | 40 011 0.64
100 | 40 00 056 |48.0 1.79 0.74 | 40 022 056
150 | 40 00 055 | 40 00 055 | 40 00 055
20.0 | 40 0.0 052 |11.0 11.38 055 | 40 0.0  0.52

Table 1. Experimental results in function of the waiting cost C(¢) = {0.01,0.05,0.1} x

t, the noise level () and the trend parameter b.
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Results: effect of the waiting cost

Increasing the
waiting cost
reduces the waiting

time

A'grjo Tech

C(t) +b 0.02 0.05 0.07
e(t) | ™ o(r*) AUC | 7 o(r*) AUC | 7 o(r") AUC
0.2 9.0 2.40 0.99 9.0 2.40 0.99 |10.0 0.0 1.00
0.5 | 13.0 4.40 0.98 | 13.0 4.40 0.98 |[15.0 0.18 1.00
0.01 1.5 |24.0 10.02 098 |32.0 2.56 1.00 [30.0 12.79  0.99
5.0 |26.0 7.78 0.84 | 30.0 1891 0.87 |130.0 19.14  0.88
10.0 | 38.0 1889 0.70 |[48.0 1.79 0.74 |46.0 527 0.75
15.0 | 23.0 15.88 0.61 | 32.0 13.88 0.64 |29.0 17.80 0.62
20.0 | 7.0 8.99 0.52 | 11.0 11.38 0.55 | 4.0 1.22 0.52
0.2 8.0 2.00 0.98 8.0 2.00 0.98 | 9.0 0.0 1.00
0.5 | 10.0 2.80 0.96 8.0 4.0 098 |14.0 0.41 0.99
0.05 1.5 5.0 0.40 0.68 | 20.0 0.42 0.95 |14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 | 5.0 0.50 0.65
10.0 | 4.0 0.29 0.56 4.0 0.25 0.56 | 4.0 0.34 0.57
15.0 | 4.0 0.0 0.54 4.0 0.25 0.56 | 4.0 0.0 0.55
20.0 | 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52
0.2 6.0 0.80 0.95 7.0 1.60 094 | 8.0 0.40 0.96
05 | 60 08 084 | 9.0 240 093 [10.0 0.0 0.95
0.10 1.5 4.0 0.0 0.67 5.0 0.43 0.68 | 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 | 4.0 0.11 0.64
v 10.0 | 4.0 0.0 0.56 | 48.0 1.79 0.74 | 4.0 0.22 0.56
15.0 | 4.0 0.0 0.55 | 4.0 0.0 0.55 | 4.0 0.0 0.55
20.0 | 4.0 0.0 0.52 | 11.0 11.38 0.55 4.0 0.0 0.52

Table 2. Experimental results in function of the waiting cost C(t) = {0.01,0.05,0.1} x
t, the noise level £(¢) and the trend parameter b.
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Results: effect of the difference

Increase of the
difference between
classes

The performance
increases (AUC)

The waiting time is not
much changed in these
experiments

eroParisTech

between classes

slope .
C(t) +b 0.02 0.05 0.07
ety | 7 o(r*) AUC | 7 o(r*) AUC | 7™ o(r*) AUC
0.2 9.0 2.40 0.99 | 9.0 2.40 0.99 | 10.0 0.0 1.00
0.5 | 13.0 4.40 0.98 | 13.0 4.40 0.98 |15.0 0.18 1.00
0.01 1.5 [24.0 10.02 098 |32.0 2.56 1.00 | 30.0 1279  0.99
5.0 |26.0 7.78 0.84 | 30.0 1891 0.87 |30.0 19.14 0.88
10.0 | 38.0 1889 0.70 |48.0 1.79 0.74 | 46.0 5.27 0.75
15.0 [ 23.0 15.88 0.61 |32.0 13.88 0.64 |29.0 17.80 0.62
20.0 | 7.0 8.99 0.52 | 11.0 11.38 0.55 4.0 1.22 0.52
0.2 8.0 2.00 0.98 8.0  2.00 0.98 9.0 0.0 1.00
0.5 |10.0 2.80 0.96 | 8.0 4.0 0.98 | 14.0 041 0.99
0.05 1.5 5.0 0.40 0.68 | 20.0 0.42 0.95 | 14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 | 4.0 0.29 0.56 4.0 0.25 0.56 4.0 0.34 0.57
15.0 | 4.0 0.0 0.54 4.0 0.25 0.56 4.0 0.0 0.55
20.0 | 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52
0.2 6.0 0.80 0.95 7.0 1.60 0.94 8.0 040 0.96
0.5 6.0 0.80 0.84 9.0 240 0.93 |[10.0 0.0 0.95
0.10 1.5 4.0 0.0 0.67 | 5.0 0.43 0.68 | 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 4.0 0.11 0.64
10.0 | 4.0 0.0 0.56 | 48.0 1.79 0.74 4.0 0.22 0.56
15.0 | 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 | 4.0 0.0 0.52 | 11.0 11.38 0.55 4.0 0.0 0.52

Table 3. Experimental results in function of the waiting cost C(t) = {0.01,0.05,0.1} x
t, the noise level £(t) and the trend parameter b.
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Are the decision times optimal

* Comparisons

— Higher values of a mean higher delay cost
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Left: decision times with Economy K

Right: optimal decision times afterwards

Achenchabe, Y. (2022). From the early
classification of time series to machine
learning-based early decision-making
(Doctoral dissertation, Université Paris-Saclay).
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Unbalanced misclassification cost and exponential delay costs

100
— =0 — =05
a=02 a=08 true class 0
80
o 601 true class 1
8 (anomaly)
7]
o
S 401
/ true class 2-
201 /
/ S " o
i c}o"’% (}’b‘:’% 0@96
04 . . . IS > N
0.0 0.2 0.4 06 0.8 1.0 & & e
proportion seen of the time series N & &
(a) Exponential delay cost (b) Misclassification cost matrix
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Unbalanced misclassification cost and exponential delay costs

: |
High delay cost : _-: ::app

+ calimera
~{— ecdire
+ ecec

—<>— economy
- = ects

—<>— proba_threshold
—~— stopping_rule

—{— teaser_avg_cost
— teaser_hm

mean rank

© 00 N O 0o b WDN -

-
o
~

¢ cost-aware
B cost-unaware

-V-———'———-V———-V————F-—-J:V———-V-———V-— Low delay cost

—_—
-_—

RN
N

0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
alpha

Economy is on average, for all values of alpha, the top method
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Unbalanced misclassification cost and exponential delay costs

0.60+

o
(4}
3}

o o
NN (@)
(@] o

Q_
S
o

o
w
o

normalized mean misclf cost

o
)
3y

0.201
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o

w

3y
>

et

¢ cost-aware
B cost-unaware

pareto frontier

calimera

ecdire

ecec

economy

ects
proba_threshold
stopping_rule
teaser_avg_cost
teaser_hm

N
Q'

v

normalized_mean_delay cost

5 X b6 oA

Q Q QO QO QO™

Economy is on the Pareto
front and tends to decide

a little bit earlier than SR
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Outline

1. Introduction

2. Classification of time series: the standard setting

3. Early Classification of Times Series (ECTS)

4. A detour: the LUPI framework

5. Anticipation-based ECTS

6. Experiments and comparisons

7. | Conclusions
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* Lots of applications
— Predictive maintenance
— Early prediction of looming disaster (e.g. volcanic eruption)
— Monitoring patients

— Early prediction of late frost in agriculture
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e Extensions

Early classification on data streams (no end time T7)

ECTS when decisions are revokable

e Autonomous car
— Believe there is an obstacle - brake

— Then revoke the former belief - increase speed

— When the decision changes the future

e E.g. Cold chain

— Predicting that merchandise will arrive spoiled = change the temperature
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A counter part in cognitive science

and experimental economy?
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The sunk-cost fallacy

Two avid sports fans plan to travel 40 miles to see a basketball

game. One of them paid for his ticket; the other was on his way
to purchase a ticket when he got one free from a friend.

A blizzard is announced for the night of the game with potential

dire consequences for the drivers.

Which one of the two ticket holders is more likely to brave the
blizzard at its own risk to see the game?

Daniel Kahneman (2017). Thinking, fast and slow. (p.343)
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p.=0.5 p.=0.5

True class
* Misclassification cost Predicted class + -
g0 gain = 100 - 40 gain = -1000-40
StOp gain =-40

Gain matrix

113 /123



p,=0.5 p=0.5

True class
* Misclassification cost Predicted class + -
g0 gain = 100 - 40 gain = -1000-40
* For the sport fan who
: N in = -40
paid 40S for his ticket stop gain

Gain matrix

Et(:go,y)eyQ [Cm(g0t|y>]
= (po. % (100 — 40)) + (p_ x (—1000 — 40))
= 30 —-520 = —490

E (stop.yyey? [Cm(stops|y)]
= (p4 x (—40)) + (p— x (—40)) = —40
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Misclassification cost

For the sport fan who got

a free ticket

P+= 0.5 P_= 0.5
True class
Predicted class + -
g0 gain =100 gain =-1000
StOp gain=0
Gain matrix

E {yo.v)e32 [Cm(201]y)]
= (p4 x (100)) + (p— x (—1000))
= 50 — 500 = —450

E Estop,y)E)ﬂ [Cm (Stopt|y)]
= (p1 x (0)) + (p— x (0))
=0
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* Rationally, the two sport fans should not try to drive in the
blizzard to see the game

(same difference between deciding to go and deciding to stop)

eroParisTech 116 /123
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The sunk-cost fallacy

“The sunk-cost fallacy, (to keep a project alive when the
rational decision would be to abandon it and star a new one,)
keeps people for too long in poor jobs, unhappy marriages,
and unpromising research projects. | have often observed
young scientists struggling to salvage a doomed project when

they would be better advised to drop it and start a new one.”

Daniel Kahneman (2017). Thinking, fast and slow. (p.346)
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Delay cost

p,=0.4 p.=0.6
True class
Predicted class + B
Go (One gain = 100-50 gain =-10-50
more step)
stop gain = -40 gain = -40
Gain matrix
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p,=0.4 p.=0.6

True class
* Delay cost Predicted class t B
Cq(t) = —40 GO (one gain = 100-50 gain = -10-50
more step)
Cd(t + 1) = —o0 stop gain = -40 gain =-40

Gain matrix

True class
Predicted class + -
+ =0.6 =0.4
- =04 =0.6

Confusion matrix of the classifier at time t+1
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p,=0.4 p=0.6

True class
* Delay cost Predicted class t B
Cq(t) = —40 GO (one gain = 100-50 gain = -10-50
more step)
Cd(t + 1) = —o0 stop gain = -40 gain =-40

Gain matrix

Ef,o ey [Cm(20t]y)]

True class
Predicted class + - — EE;’;ily}’)EJ)Q [Cm (gt—l—1|y)]
+ = 0.6 =0.4 = —40.4
t _
- =0.4 =0.6 > (stop,y)e)? [Cim (stope|y)] = —40
Confusion matrix of the classifier at time t+1 ==> STOP
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p,=0.4 p.=0.6

True class
* Delay cost Predicted class + -
— 48
GO (one gain = 100-60 gain = -10-60
Cq(t) = =50 more step)
— —50
stop gain =-50 gain =-50
Cd(t + 1) = —060
Gain matrix
True class n Ezgo,y)ejﬂ [Crm (20t |y)]
Predicted class - .
=E 5. peye [Colerly))
+ = 0.6 =0.4 _ 96
- =0.4 =0.6 Efstop,y) cy2 [Cm(stope|y)] = —50
Confusion matrix of the classifier at time t+1 ==> STOP (even more s0)
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 But human deciders tend to do the opposite

— Choosing to go one step further and that all the more that the

cost already paid is high

— As if:
* The probability of success was higher than it is

* The increased cost of sticking to the project was less than it actually is

Underlying impulsion: humans want to recover the costs incurred to date
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 The ECTS algorithm with anticipation (LUPI) is like a system 2

(rational decision system)
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