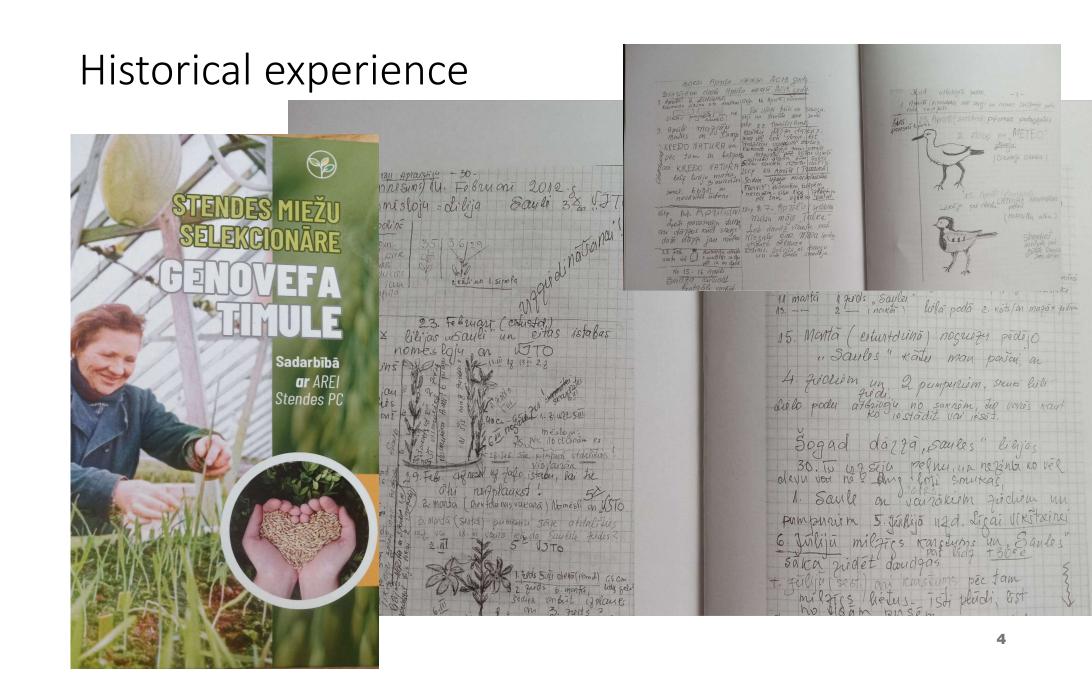
Methodology development to create methods for acquisition and integration of historical, UAV sensors and IoT data for agriculture

- Historical data many decades of accumulated experience and data
- Variable data acquisition and storage methods
- The arrival of new technologies is getting faster and faster
- Huge competition, growing range of available solutions
- Lack of resources (intellectual, technical, material).
- The influence of weather conditions and other environmental factors

Basic problem: integration of data in a unified environment, analysis and final product for the user

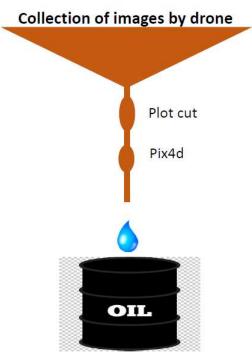
Andris Lapāns Mg.sc.ing. ViA SSII Research Assistant AREI Remote Sensing expert

21-Oct-2024 TED4LAT



Vidzeme University of Applied Sciences cooperation with Institute of Agricultural Resources and Economics

Education institution and an important bioeconomy industry research and leading field plant breeding institute with more than 100 years of history cooperation with high school.


History and operation

- More than 100 years of experience
- AREI scientists and specialists works:
 - \circ In the bioeconomy sector
 - \circ In the department of grain technology and agrochemistry
 - \circ In field plant selection, agroecology and pre-election laboratory
- Priekuļi and Stende Research Centers, Technology Transfer Center and Agricultural Market Promotion Center
- AREI's activities are spread throughout Latvia, 4 main locations, as well as participation in international projects (experience in Lithuania, Estonia, Sweden, Norway)
- Much is being done in the field of knowledge transfer and learning new technologies, which is associated with various challenges
- Cooperation with Vidzeme University of Applied Sciences

Experience of Norwegian colleagues

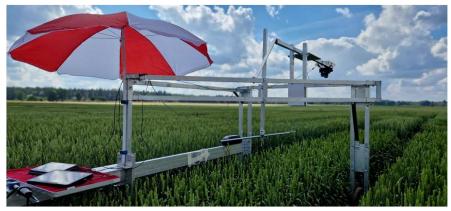
Data pipeline from HTP with UAV

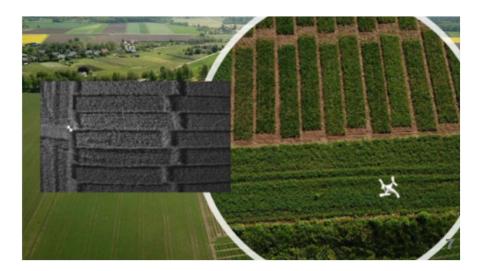
- Collection of «big data»
- Time consuming adjustments of images
- Large computer capacity needed
- Outcoming data difficult to integrate with other results

[] Graminor

Today's activities

- Modern technologies, such as precision agriculture
- International projects
- Standardized work methods, work protocols
- New tools and software
- Conferences and webinars
- •••





International NOBAL Wheat Project

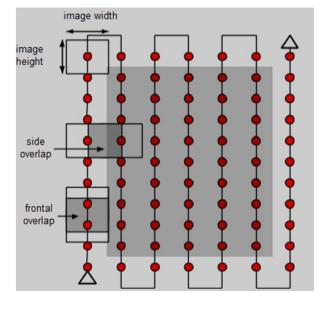

- A three-year project that gave us stability and confidence in what we do
 - \circ Higher work efficiency
 - \circ Improved competences
 - Better productivity
 - Innovative solutions
 - **o** Cooperation experience
 - Market knowledge
 - Strategic thinking
 - New data collection methods
 - \circ Improved data processing
- International cooperation
- Experienced consultants
- Networking opportunities

Phenomobile vs UAV

Data series (3 years x 10 missions) using UAV

Orthophoto map

- Gets data when and where it is needed, with the necessary accuracy and resolution
- Compatibility with other resources in the GIS environment
- Required GSD* at least 1cm
- Shift of images between missions no more than 3cm


*GSD (Ground Sampling Distance) it is also known as "ground surface resolution". This term is used in photogrammetry and remote sensing technologies to describe the spatial resolution of an image on the earth's surface. Basically, it indicates the distance on the ground represented by each pixel in the image.

RGB (color photo) and Multispectral camera

- RGB (Red, Green, Blue)
- RE, NIR (Red Limit, Near Infrared)
- Photos are taken while flying, in consecutive series

Correct protocols needed to collect data

The gray area is the research area. Image coverage not less than 70% and not more than 85%. If you want to get a 2D orthophoto, then point the camera vertically down. If a 3D object or surface model is required, the camera is turned at an angle of approximately 15 degrees from the vertical.

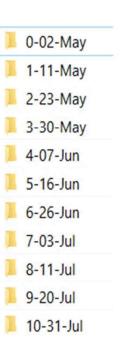
Field planning

- NUE trial design for 16 genotypes at 2 N levels
- Split field design the field is divided into four main blocks, and the application of both N fertilization levels is randomly distributed among these four blocks.
- Crop trial design, 300 spring wheat genotypes
- Design of random blocks

		N75 Rando	omizeo	1				N150 Rando				N150 Rande		d		*		N75 Rand	omize	d		CALL ROOM SHOW IN COMPANY OF
4	5	12	13	20	21	28	29	36	37	44	45	52	53	60	61	68	69	76	77	84	85	
3	6	11	14	19	22	27	30	35	38	43	46	51	54	59	62	67	70	75	78	83	86	
2	7	10	15	18	23	26	31	34	39	42	47	50	55	58	63	66	71	74	79	82	87	
1	8	9	16	17	24	25	32	33	40	41	48	49	56	57	64	65	72	73	80	81	88	

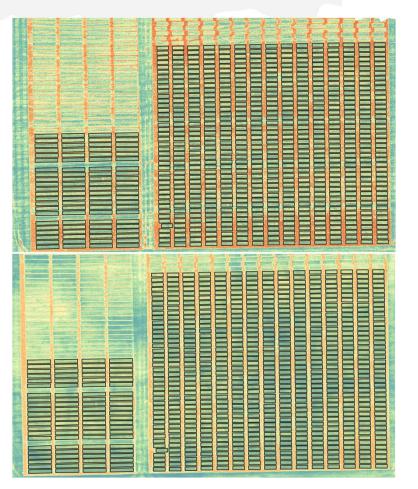
nlic	ation	<mark>1; ran</mark>	domi	ed																	Replica	ation 2	rando	mized					•			e an a de la constanción de la construir de una ostruinantes e de autoria a servicio a de autoria autoria de au Journal el constanción de la construir de la construir de la constanción de la constanción de la constanción Journal el constanción de la construir de la constanción de la constanción de la constanción de la constanción		
1	2	1,10		4		6	7		9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 32			
N244	NW	68 NW	278 N	V171 N	W174	NW254	NW151	NW173	NW77	NW228	S NW2	NW15	NW66	NW246	NW181	NW232	NW264	NW261	NW300	NW49	NW117	NW60	NW71	NW263	NW181	NW111	NW261	NW299	NW300	NW256	NW13 NW2	National states and a contraction of the second sec		
-	-	146 NW	263 N	V203 N	W27	NW104	NW1	NW170	NW201	NW12	2 NW12	NW163	NW280	NW148	NW190	NW175	NW165	NW35	NW119	NW72	NW86	NW249	NW145	-				NW182			NW52 NW1			
	-	-		11 11 12 12 12	2 C C C C C C C C C C C C C C C C C					-	Contraction of the		NW200							NW196			NW264	NW283	NW143	NW108	NW17				NW252 NW2			
-	-	256 NW	_	-		NW56	NW84			-	-	5 NW206		NW209	NW288	NW32	NW155	NW133	NW154	NW187	NW56	NW185	NW126	NW243	NW209	NW67	NW2				NW132 NW2			
290	NW	79 NW	157 N	WS1 N	W118	NW115	NW22	NW61	NW12	NW172	2 NW91	NW142	NW277	NW75	NW260	NW24	NW136	NWSS	NW143	NW253	NW231	NW68	NW12	NW110	NW218	NW192		NW35			NW32 NW2	the second state of the se		
	-	213 NW	215 N	V285 N	W14	NW55	NW85					2 NW121									NW149		NW73	NW239	NW235	NW171	NW130	NW95	NW184	NW11	NWSS NW	Constraint designation of the second standard of strings on which the second standard of strings on which the second standard of the seco		
226	NW	130 NW	42 N	V116 N	W257	NW161	NW43	NW262	NW297	NW24	5 NW12	NW31	NW29	NW168	NW198	NW268	NW9	NW132	NW279	NW237	NW223	NW40	NW250	NW138	NW189	NW106	NW33	NW89	NW10	NW83	NW96 NW2	N N N N N N N N N N N N N N N N N N N		
110	NW	286 NW	131 N	V141 N	W48	NW269	NW90	NW214	NW21	NW274	4 NW18	NW233	NW212	NW178	NW144	NW7	NW296	NW225	NW219	NW83	NW93	NW53	NW58	NW279	NW25	NW57	NW196	NW18	NW270	NW240	NW76 NW1			
87	NW	V4 NW	18 N	V193 3	WWS 1	NW112	NW52	NW294	NW291	NW24	7 NW69	NW3	NW51	NW6	NW185	NW59	NW11	NW249	NW16	NW34	NW208	NW141	NW166	NW172	NW288	NW133	NW16	NW70	NW247	NW43	NW241 NW1	Note gate and state to a serie indexer a task and give ratio estadard d		
239	NW	180 NW	160 N	W40 N	W218	NW184	NW295	NW64	NW234	NW65	NW17	NW250	NW156	NW78	NW224	NW135	NW60	NW271	NW211	NW227	NW55	NW29	NW50	NW287	NW20	NW205	NW257	NW297	NW178	NW148	NW230 NW2	near transmission and a second a second s		
-	-	-		-						-	-	-	NW272	_				-													NW245 NW1	1000000		
-	_	1000000	Contraction of the local division of the loc				NW20		100000000000000000000000000000000000000		-		NW10	-				NW167	NW210	NW289	NW160	NW236	NW61		NW113				NW134	NW293	NW168 NW	10.00.2022		
780	NW	103 NW	111 N	V221 N	W33	NW284	NW205	NW62	NW195	NW94	NW18	NW216	NW93	NW273	NW258	NW140	NW26	NW38	NW41	NW145	NW227	NW204	NW125	NW120	NW280	NW144	NW84	NW268	NW180	NW215	NW200 NW1	C In the second s		
267	-	-		_			NW188		NW124	NW67	NW16	2 NW276	NW192	NW147	NW71	NW287	NW259	NW108	NW44	NW281	NW72	NW85	NW24	NW244	NW197	NW100	NW284	NW98	NW116	NW38	NW222 NW2	66 NW114 NW207 NW188 NW37 NW269 NW177 NW51 N		
1152	NUT	140 377	138 N	W23 N	11/202	001117	10104	ATTICT.	20110	MILLE	1 3/31/02	2011202	NTU20	NRU125	NW46	1011176	NT12208	377207	2000	NUTLEA	NW110	NRU170	NILL'78	NULSS	N7312214	NULDOD	MILIAS	NTW122	NULOS	NR1127	MULIZO MULZ	90 NW121 NW49 NW296 NW258 NW44 NW26 NW281 N		

Proximal phenotyping (growth stages)

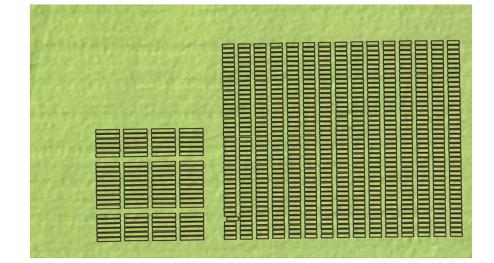

- GS21 Beginning of jam formation:
 - Cereals begin to form side shoots, which will be an additional source of grain.
- GS65 Full flowering:
 - The plant is in full bloom and all the flowers have opened.
- GS73 Beginning of milk ripening:
 - The grains begin to fill with a milky liquid, but are not yet fully ripe.

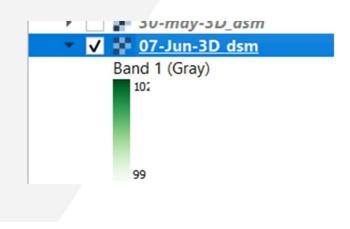
A challenge for an IT specialist, specific knowledge in agriculture is required

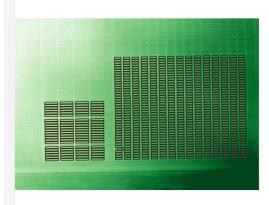
UAV missions



An example of multispectral data analysis

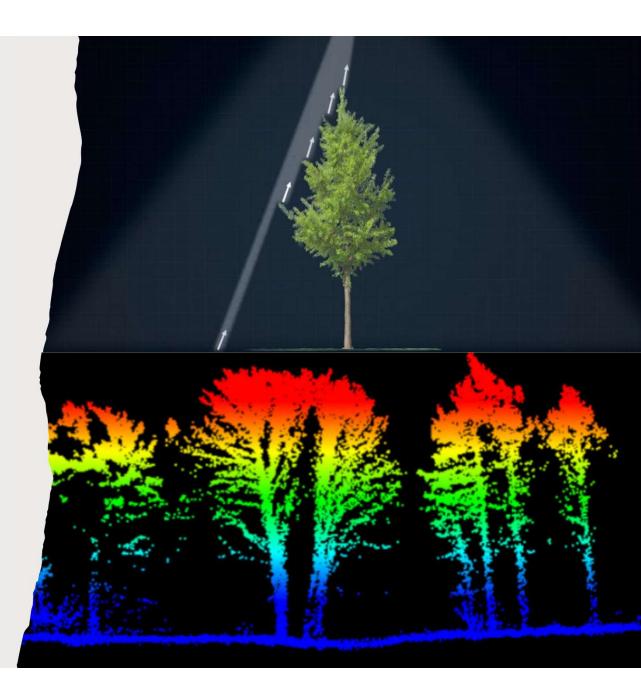

NDVI 30-May-2023 NDVI 03-Jul-2023 We see differences that cannot be seen with the human eye


A challenge for an agricultural specialist, specific knowledge in IT, DB, remote sensing and GIS is required

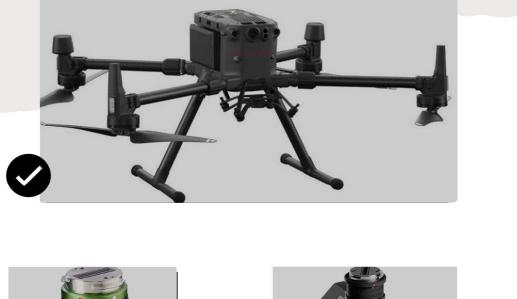


Surface model analysis

- Open access LiDAR data
- Field height model from photographs (99-102m a.s.l.)

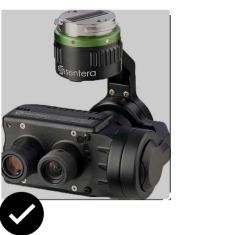


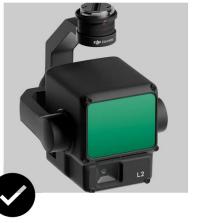
LiDAR capabilities


- Several levels of light beam reflection
- Classification
- Resources for research
 - <u>https://levelfivesupplie</u> <u>s.com/100-real-world-</u> <u>applications-of-lidar-</u> <u>technology/</u>

Applicability

- Surface models (water runoff, depressions, erosion)
- Microtopography (analysis of the surface "hidden" under grass, moss, plant remains)
- Evaluation of field soil
- Analysis of land reclamation and irrigation infrastructure
- Plant classification (vertical)
- Horizontal distribution of plants
- Determination of vegetation density (ratio of vegetation to soil).
- Determining the amount of green mass
- Identification of contamination
- Biodiversity analysis
- Assessment of carbon absorption


Technical resources



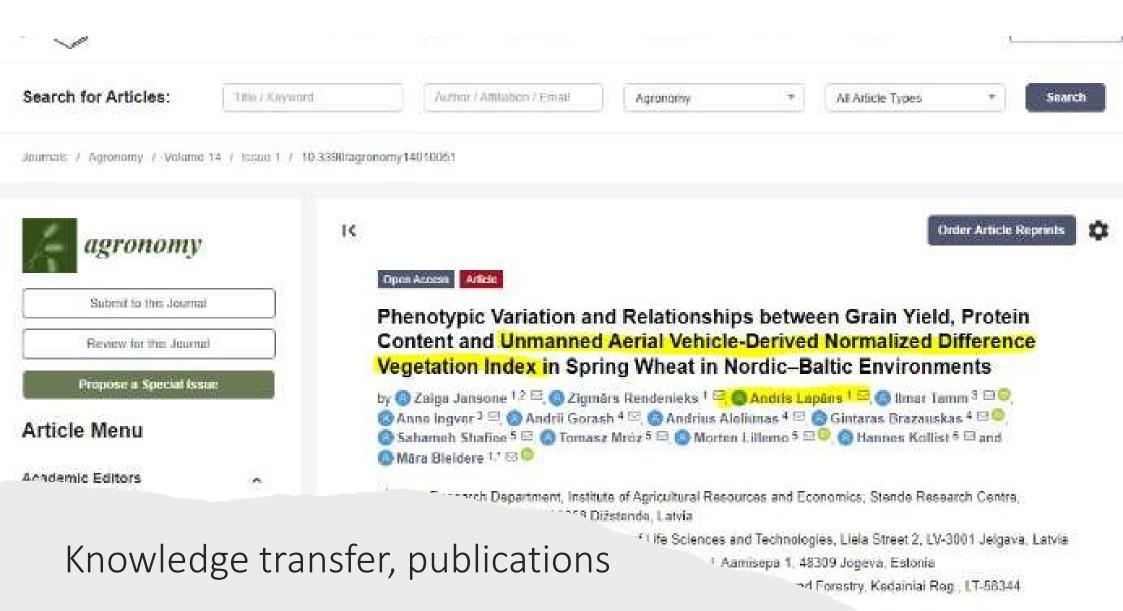
•We have

DJI Matrice 300
Sentera Multispectral
Pix4D Mapper

QGIS
Purchased, but needs to be learned
DJI Zenmuse L2 LiDAR*
New learning challenges
AI (Artificial Intelligence)
GIS (Geographic Information Systems)

LiDAR(Light Detection and Ranging) is a technology that uses laser beams to measure distances and create three-dimensional (3D) images and models of the surrounding environment.

Future intentions


- We must continue to do as we have learned (both historically and now).
- New opportunities for cooperation
- Improved data integration and analysis (proximal and remote phenotyping)

Use of AI

•Proximal phenotyping: Uses close-up sensor technologies to obtain data about plants, for example using drones or mobile devices. Example: a drone camera that captures high-resolution images from the field.

•Remote phenotyping (Remote Sensing): Satellites or aircraft are used to observe and analyze large areas from a distance. Example: satellite images analyzing rural health or plant condition over large areas.

NO-1433 As, Norway

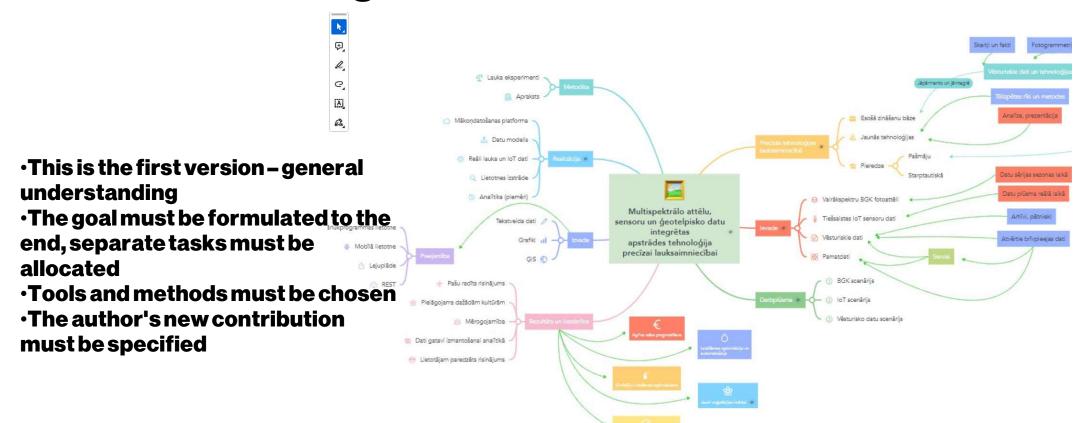
Today's activities

0

- Barley project
- The weed project
- Research and Methodology development

Research question and focus

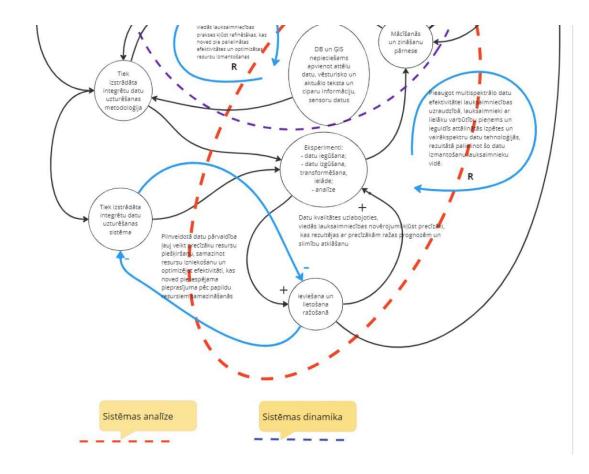
- How can a scalable and flexible system be designed to integrate diverse data sources (multispectral, LiDAR, IoT sensors) with actual manual field observations, meteorological information, harvest data and historical data for precision agriculture?
- Focus: System architecture and modularity.

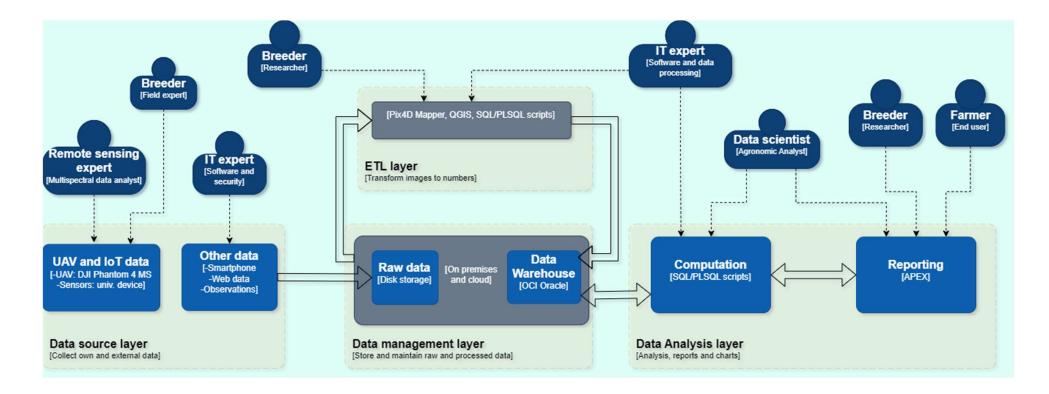

Problem statement:

Integrating multispectral, LiDAR, sensor, and historical data into a unified geospatial model for precision agriculture presents key challenges. The gap between technical experts and agricultural professionals highlights the need for unified approach. shared а understanding, and clear methodology for data acquisition and transformation in an ever-evolving

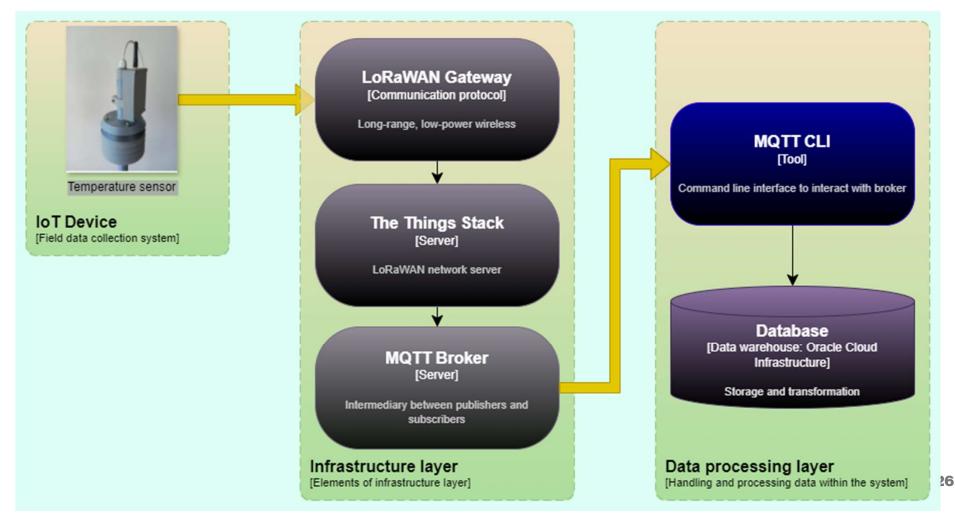
Aim of this work:

develop comprehensive То а methodology for designing and rapidly adjusting data acquisition, processing, and maintenance systems for data science applications in precision agriculture.


All stakeholders must come to a common understanding


A transparent, universally understandable concept must be validated and verified

How to perform these tasks?


•Requirements model, the creation of which has several (as many as necessary) iterations •Financing and implementation

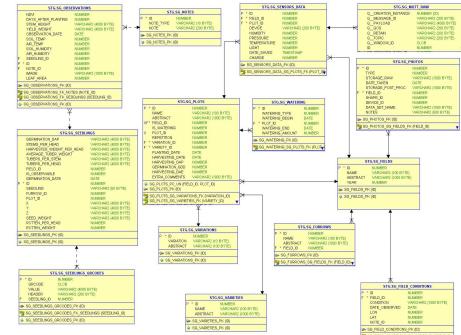
Architecture for multispectral data acquisition, integration and analysis

IoT data processing architecture

Database: OCI as platform and flexible Data model

Generativity.

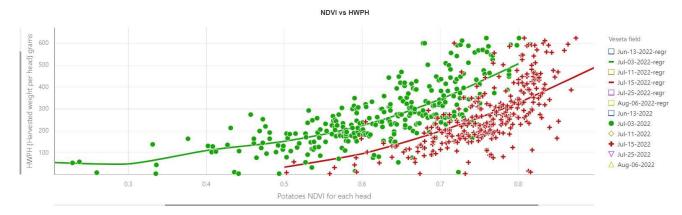
It is a technology's capability of producing new outputs without input from the originator.


Scalability.

Ability to handle growing volumes of data and increasing complexity of processes as precision agriculture advances.

Accesibility.

Easy access for different users, with varying levels of expertise. Interoperability.


Compatible with various tools, databases, and platforms, allowing users to integrate other technologies

or data sources easily. Sun, R., Gregor, S., Fielt, E. (2021). Generativity and the paradox of stability and flexibility in a platform architecture: A case of the oracle cloud platform, Information & Management 58(8), 103548.

https://www.sciencedirect.com/science/article/pii/S0378720621001221

User interface, charts, reports

≡ SG-1								
🖁 Sākums / Home 🖂	Home \		ing tao					
QR tests / testing QR	Nov	/ērc	ojumi / (Observ	ations			
Städs no QR / Seedling from QR	1		08-JUN-21	V01BL10	Dzeltē lapas (10%)			
QR kodi / QR codes	1	.56	16-JUN-21	V01BL10	NDVI zonālā statistiskā vērtība			
Novērojumi / Observations	1		12-JUL-21	V01BL10	NDVI zonālā statistiskā vērtība			
tādi / Seedlings			10,000,01	1010210		and the second second		
auki / Fields	1		27-JUL+21	V01BL10		1	07272021-1241_image.jpg	
Lauciņi / Plots	-							
/agas / Furrows	1		29-JUL-21	V01BL10		1383	07292021-1648_image.jpg	
Šķirnes / Varieties	1		29-JUL-21	V01BL10	Priekšlaikus izrakts			
Stādu kodi / Seedling codes	1		29-JUL-21	V01BL10	Melnkāja			
.auciņu dati / Plot data						No. of Concession, Name		
Piezīmes / Notes	1		29-JUL-21	V01BL10		- at Si	07292021-1620_image.jpg	
Seedlings / Observations								
/isi novērojumi / All obs	1		29-JUL-21	V01BL10		ALC: NO	07292021-1624_image.jpg	
	1		29-JUL-21	V01BL10				
							1 - 10	
	-							
	Jaun	s novēro	ums/New Observat	ion Rediget	stadu/Edit seedling Atpakal/	Back to Seedling		

Novelty

 Flexibility and adaptability, user-oriented design: Unlike existing solutions, which often provide rigid frameworks for specific problems, this methodology offers a scalable and modular approach, allowing users to rapidly adjust systems to evolving data sources, tools, and technologies in agriculture.

Key novel aspects include:

- Customizable and Dynamic System Design: The methodology emphasizes the ability to quickly integrate new tools, such as UAV-based multispectral imaging, LiDAR, IoT sensors, and historical data. This flexibility is crucial for addressing the constantly changing technological landscape in precision agriculture.
- Modular and Service-Oriented Architecture: It introduces a modular structure that can be adapted to different agricultural tasks with minimal disruption, enhancing the ease of customization for various use cases and tools.
- Focus on Real-Time Data Integration: By providing a framework for seamless integration of diverse, multimodal data (e.g., geospatial, sensor, historical data), the methodology oriented to support real-time decision-making and data processing.
- Cross-Disciplinary Knowledge Transfer: The research addresses the gap between IT specialists and agricultural professionals, offering methods to enhance collaboration, reduce friction, and promote knowledge sharing across domains.
- Rapid Customization for Emerging Technologies: Unlike other systems that may become outdated as new⁹ tools are introduced. this methodology allows users to modify and expand the system as new technologies

Current challenges

- Submit publication
- LiDAR data processing workflows (methodology females)
- Literature review

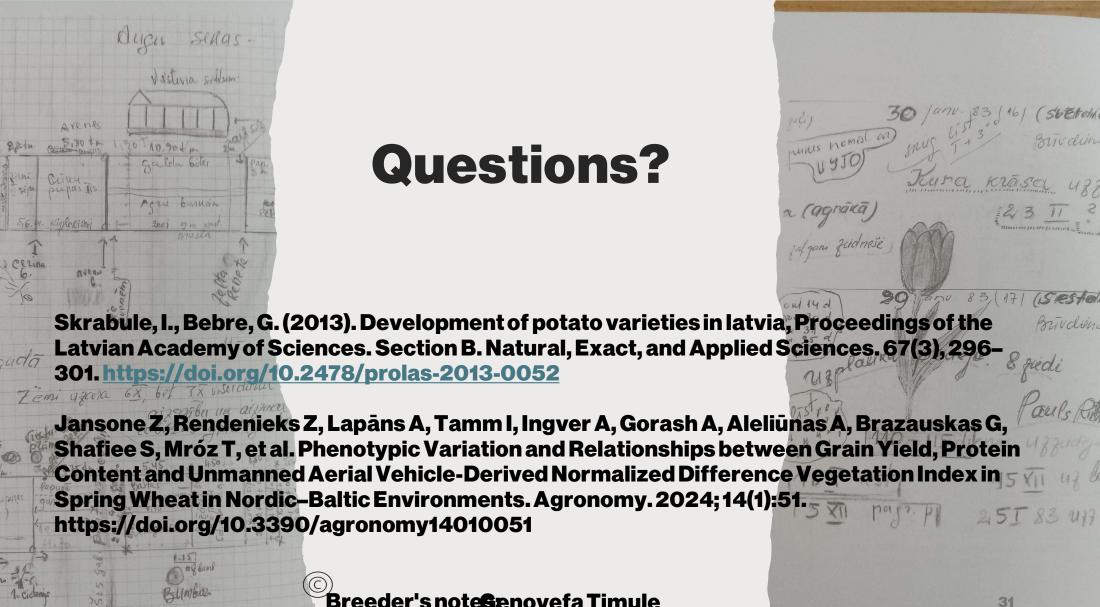
Standard operating procedures for UAV phenotyping. url:

https://excellenceinbreeding.

org/sites/default/files/manual/EiB_M4_%20SOP-UAV-Phenotyping-12-10-20.pdf.

Biomass Prediction with 3D Point Clouds from LiDAR.url: <u>https://</u> openaccess.thecvf.com/content/WACV2022/papers/Pan_Biomass_ Prediction_With_3D_Point_Clouds_From_LiDAR_WACV_2022_paper. Pdf.

Soumya Debnath, Manik Paul, and Tanmoy Debnath. "Applications of LiDAR in Agriculture and Future Research Directions". In: J Imaging 9.3 (Feb. 2023), p. 57. doi: 10.3390/jimaging9030057. url: https: //doi.org/10.3390/jimaging9030057



Funded by the European Union

Acknowledgeme nt:

This research has been funded by the European Union. Project "Twinning in Environmental Data and Dynamical Systems Modelling for Latvia". TED4LAT, No. 101079206. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Breeder's note**G**enovefa Timule