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Principles of Reinforcement Learning
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What is reinforcement Learning?

Definition (Wikipedia)
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned
with how an intelligent agent ought to take actions in a dynamic environment in order to maximize the
cumulative reward.
Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and
unsupervised learning.

RL is based on the Markov Decision Process (MDP) framework, which allows to
represent sequential decision problems under uncertainty.
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Markov Decision Processes
A MDP is defined as a tuple ⟨S,D,P, r/c⟩, where:
▶ S is a (generally finite) set of states of the controlled system.
▶ D is a (generally finite) set of decisions.
▶ P is a transition function. P(s′|s,d) is the probability that the system, initially

in state s ∈ S transitions to state s′ ∈ S when decision d ∈ D is applied.
▶ r (resp. c) is a reward (resp. cost) function associated to transitions.
r(s,d, s′) is the reward obtained when a transition (s,d, s′) occurs.

Solving a MDP amounts to finding a policy π : S × {0, . . . ,H− 1} → D, optimizing
the expected sum of rewards/costs obtained during a finite number of steps2, H.

Vπ(s) = Eπ

[H−1∑
t=0

r(St, πt (St) , St+1)|S0 = s, π
]

2Classical other objective exist for infinite horizon: Average cost, discounted cost...
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Solving Markov Decision Processes

In the finite state/decision spaces case, there exists an optimal policy π∗ (such
that Vπ∗

(s) ≥ Vπ(s), ∀π,∀s ∈ S).
Furthermore,
▶ π∗ can be computed efficiently (i.e. in time polynomial in H, |S|, |D|), using,

e.g. dynamic programming, or linear programming.
▶ However, when S,D are multidimensionnal or continuous, or when the

problem is partially observed, or when the model is unknown and
accessible only through simulation...

▶ Dynamic Programming can no more be efficiently applied!
▶ (Deep) Reinforcement Learning approaches may be the solution...
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Reinforcement Learning in MDP (ex: infinite H. Q-learning)

EnvironmentAgent

observation

decision

cost

The optimal policy is progressively
computed from observed transitions

⟨s,d, s′, c⟩

Qπ(s,d)︸ ︷︷ ︸
Policy Q-function

=Eπ

[
+∞∑
t=0

γtc(St−1,Dt, St)|S0 = s,d
]

︸ ︷︷ ︸
Value of applying d in s and then following π

Q⋆(s,d)︸ ︷︷ ︸
Q function

= min
π∈Π

Qπ(s,d)

π⋆(s) = argmin
d∈D

Q⋆(s,d)

⟨s,d, s′, c⟩ ⇒ Qn(s,d)← (1− α)Qn−1(s,d) + α

(
c+ γmin

d′
Qn−1(s′,d′)

)
(Qn) converges to Q∗ when n→ +∞!
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Deep Q-Network algorithm (infinite horizon)
▶ Uses a neural network to ”learn” the Q-function from observed trajectories
▶ Handles multidimensional continuous state spaces (finite decision space)
▶ Data Consuming !

Deep Q-networkEnvironment


Q(s,d1)
· · ·
Q(s,dK)

s

d = argmindk Q(s,dk)

Loss function
L = (c+ γmind′ Q(s′,d′)− Q(s,d))2

Loss gradient

(s′, c)

RL for complex sequential decision problems
October, 22, 2024 / Régis Sabbadin

p. 7



Some challenges in RL raised by applications

▶ Partial observability: Innovation adoption in agriculture
▶ Non-Markovian process: Cancer treatment follow-up
▶ Multiple Learning Agents: Anti-poaching
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Challenge 1: partial observability
Innovation Adoption in agriculture
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Innovation adoption example3

Objective: Design of public policies aiming at increase the adoption rate of an
innovation (communicating water meters in irrigated agriculture)

EnvironmentAgent

observation

decision

cost

▶ Agent: Public Authority
▶ State: mental state of farmers and

interaction network (complex state,
unobserved)

▶ Reward: Increase of #adopters
▶ Decision: parameters of 3 levers.

Environmental protection
awareness, training, subsidies

▶ Observation: #adopters, available
budget, remaining time steps

3[Vinyals et al., 2023] Towards AI-designed innovation diffusion policies using agent based
simulations and reinforcement learning: the case of digital tool adoption in agriculture
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Innovation adoption example3

Objective: Design of public policies aiming at increase the adoption rate of an
innovation (communicating water meters in irrigated agriculture)

EnvironmentAgent

observation

decision

cost

▶ The state is perceived only through
partial observations

▶ Complex transitions, simulated by
the Gama simulator

▶ The mental reconstruction of the
state depends on histories of past
actions/observations

▶ States and actions are continuous /
high-dimensional

▶ Fits the POMDP framework!3[Vinyals et al., 2023] Towards AI-designed innovation diffusion policies using agent based
simulations and reinforcement learning: the case of digital tool adoption in agriculture
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Partially Observable Markov Decision Process

Environment

Agent

st−1

POMDP Definition
A POMDP is defined by a tuple (S,D, P,Ω, Z, c).

▶ State of the process: s ∈ S ;
▶ Decision: d ∈ D;
▶ Transition probability: P(s′|s, d);
▶ Observation: ω ∈ Ω;
▶ Observation function: Z(ω|s, d, s′);
▶ Cost function: c(s, d, s′).
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Partially Observable Markov Decision Process

Environment

Agent

st−1

d t
−

1

st

ωt

P(·|st−1,dt−1)

Z(·|st−1,dt−1st)

POMDP Definition
A POMDP is defined by a tuple (S,D, P,Ω, Z, c).

▶ State of the process: s ∈ S ;
▶ Decision: d ∈ D;
▶ Transition probability: P(s′|s, d);
▶ Observation: ω ∈ Ω;
▶ Observation function: Z(ω|s, d, s′);
▶ Cost function: c(s, d, s′).
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Partially Observable Markov Decision Process

Environment

Agent

st−1st

ωt

P(·|st−1,dt−1)

Z(·|st−1,dt−1st)

ω
t c t

POMDP Definition
A POMDP is defined by a tuple (S,D, P,Ω, Z, c).

▶ State of the process: s ∈ S ;
▶ Decision: d ∈ D;
▶ Transition probability: P(s′|s, d);
▶ Observation: ω ∈ Ω;
▶ Observation function: Z(ω|s, d, s′);
▶ Cost function: c(s, d, s′).
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Solving a Partially Observable Markov Decision Process

A POMDP can be seen as a MDP where ”states” are replaced with histories
or, equivalently, by belief states, computed from trajectories
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Solving a Partially Observable Markov Decision Process

A POMDP can be seen as a MDP where ”states” are replaced with histories
or, equivalently, by belief states, computed from trajectories

▶ In a POMDP, we do not observe st, but noisy observations ωt

▶ A t-step history ht = (ω0,d0, ω1,d1, . . . , ωt−1) ∈ Ht summarizes our
probabilistic belief bt about the state st

▶ In a finite-horizon POMDP, optimal policies are history dependent
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Solving a Partially Observable Markov Decision Process
▶ In a POMDP, we do not observe st, but noisy observations ωt
▶ A t-step history ht = (ω0,d0, ω1,d1, . . . , ωt−1) ∈ Ht summarizes our

probabilistic belief bt about the state st
▶ In a finite-horizon POMDP, optimal policies are history dependent

π = {πt, }t=0,..,H−1, where πt : Ht → Dt

V(π, s)︸ ︷︷ ︸
Criterion to optimize

= E

[H−1∑
t=0

c(Ht,Dt, St) | S0 = s, π,Dt ∼ πt(Ht)
]

︸ ︷︷ ︸
Expected long-term cost following policy π

V⋆(s)︸ ︷︷ ︸
Value function

= min
π∈Π

V(π, s)︸ ︷︷ ︸
Minimization over the set of policies Π.
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Solving a Partially Observable Markov Decision Process

▶ In a POMDP, we do not observe st, but noisy observations ωt

▶ A t-step history ht = (ω0,d0, ω1,d1, . . . , ωt−1) ∈ Ht summarizes our
probabilistic belief bt about the state st

▶ In a finite-horizon POMDP, optimal policies are history dependent

POMDP are far more difficult to solve than usual MDP!
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Solution approaches

Modelled problem

POMDP

belief MDP

Discretisation

M
odelling

Dynamic Programming Monte-Carlo Planning

RL for complex sequential decision problems
October, 22, 2024 / Régis Sabbadin

p. 13



Solution approaches
Modelled problem

POMDP

discrete observation dates
continuous state space

partially observed
unknown dynamics model

can be simulated
M

odelling
Deep Reinforcement Learning
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Challenge 2: Non-Markovian process
Cancer treatment follow-up

(related to Orlane Rossini’s PhD thesis)
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Medical Context
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Figure: Example of a patient’s dataa

aIUCT Oncopole and CRCT, Toulouse, France

▶ Patients who have had a cancer
benefit from regular follow-up;

▶ The concentration of clonal
immunoglobulin is measured over
time;

▶ The doctor must make new
decisions at each visit.
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Figure: Example of a patient’s dataa

aIUCT Oncopole and CRCT, Toulouse, France

▶ Patients who have had a cancer
benefit from regular follow-up;

▶ The concentration of clonal
immunoglobulin is measured over
time;

▶ The doctor must make new
decisions at each visit.

=⇒ Optimize decision-making to
ensure the patient’s quality of life
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Piecewise-Deterministic Markov Process

A Piecewise-Deterministic Markov Process is defined through three local features

D
D

ζ0
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Piecewise-Deterministic Markov Process

A Piecewise-Deterministic Markov Process is defined through three local features

D

ϕ∅
0,1(ζ0, t)

=
ζ0

ϕ∅
1,2(ζ, t)
=

ζev1t

ϕa1,2(ζ, t)
=

ζe−
v1
k t

ϕ∅
2,3(ζ, t)
=

ζev2t

D

ζ0

The flow
The deterministic part of the process

ϕℓ
m,k(ζ, t)
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Piecewise-Deterministic Markov Process

A Piecewise-Deterministic Markov Process is defined through three local features

D

T1 t⋆1 T2

T3

D

ζ0

Jump intensity
Description of the jump mechanism of the process

▶ Boundary jump (deterministic)

tℓ⋆m (ζ) = inf{t > 0 : ϕℓ
m,k(ζ, t) ∈ {ζ0,D}}

▶ Random (continuous time) jumps

P(T > t) = e−
∫ t

0 λℓ
m(ϕℓ

m,k(ζ,t)) ds
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Piecewise-Deterministic Markov Process

A Piecewise-Deterministic Markov Process is defined through three local features

remission
(m = 0)

relapse
(m = 1)

incurable
relapse
(m = 2)

death
(m = 3)

ℓ = a

ℓ ̸= a

Random jump
Deterministic jump

The kernel

▶ Discrete part of the state:
▶ Mode m ∈ N
▶ Number of relapses k ∈ N

▶ Law of the state of the process after each jump:
P(m′, k′|m, k, ζ, t, ℓ)
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Controlled Piecewise-Deterministic Markov Process
Example of cancer treatment follow-up

Random jump from a deterministic regime to the next

D
D

ζ0
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Controlled Piecewise-Deterministic Markov Process
Example of cancer treatment follow-up

Random jump from a deterministic regime to the next

D

remission
(m = 0)

relapse
(m = 1)

remission
(m = 0)

incurable
relapse
(m = 2)

D

ζ0

Let the patient state be x = (m, k, ζ,u):
▶ m disease ”mode”;
▶ k number of relapses;
▶ ζ biomarker value;
▶ u time since last jump.
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Controlled Piecewise-Deterministic Markov Process
Example of cancer treatment follow-up

Random jump from a deterministic regime to the next

D

(ℓ = ∅)

chemotherapy
(ℓ = a)

(ℓ = ∅)

(ℓ = ∅)

D

ζ0

Let the patient state be x = (m, k, ζ,u):
▶ m disease ”mode”;
▶ k number of relapses;
▶ ζ biomarker value;
▶ u time since last jump.

Let d be the decision: d = (ℓ, r):
▶ ℓ treatment;
▶ r time till next visit.
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Monte-Carlo planning solution approach4

”Simplified” real-life problem

Controlled Piecewise-Deterministic Markov Process

Partially Observed Markov Decision Process

discrete observation dates
continuous state

partial observability
partially known dynamics

can be simulated

M
odeling

Solving through history-based POMDP transformation
4de Saporta et al., Medical follow-up optimization: A Monte-Carlo planning strategy, 2024,

https://hal.science/hal-04382747v1
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Summary
Simplified real-life problem

Controlled PDMP

POMDP Bayes-Adaptive POMDP5

M
odelling

Model-free algorithms Model-based algorithms

Solving

▶ Model-free algorithms require lots of data or a simulator
▶ Model-based algorithms require less data (but prior knowledge of model

structure)6
5Orlane Rossini’s PhD thesis
6Codes available at https://forgemia.inra.fr/orlane.le-quellennec/controlled_pdmp_po
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Challenge 3: Multiple learning agents
Anti-poaching

(Prasanna Maddila’s PhD thesis)
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Context

▶ We want to solve a subclass of
stochastic games, where
▶ Some agents are cooperative, . . .
▶ and the others independently

compete with the team.

▶ We can formally model
Anti-Poaching in this sub-class
▶ where rangers cooperate against

independent poachers.
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Partially Observable Stochastic Games

Environment

P(st+1|st,dt)

Agent i

ωt+1
i ,Rtidti

Figure: Simulation of a time-step in a
POSG

▶ Each agent has a local history
hti = (d0

i , ω
1
i ,d

1
i , . . . ,d

t−1
i , ωti ).

▶ Local (mixed) policy πi(hti) ∈ ∆(Di)
▶ Transitions and rewards depend on

joint decisions
▶ value of a joint policy:

vπ,i(hti) = Eπ

[ H∑
τ=t

γτ−tRτi

∣∣∣∣∣hti
]

(1)

▶ A Nash Equilibrium is a joint policy
(π∗
i )i∈I from which

no agent has interest to deviate:
∀i ∈ I,∀πi

vπ∗
i
(h) ≥ v(πi,π∗

−i)
(h) (2)RL for complex sequential decision problems
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Solving Partially Observable Stochastic Games
▶ POSG are an extension of both POMDP and normal-form games
▶ How can we compute joint equilibrium policies ?

▶ Exact solution method:
▶ Dynamic programming7

▶ . . . but only for small games

▶ Reinforcement learning approaches?
▶ There exists Reinforcement Learning approaches8

▶ ... which are often used for 2-player games
▶ ... or for for purely competitive/cooperative games

7[Hansen et al., 2004]
8[Yang and Wang, 2021]
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The Anti-Poaching Game

Figure: Visualisation of the
Anti-Poaching Game

▶ The game has two types of agents: Rangers
(i ∈ I) and Poachers (j ∈ P)
▶ playing in a grid-world of fixed size
▶ during a finite horizon (0 ≤ t ≤ H).

▶ Rangers can move or skip their turn ∀i ∈ R,

Di = {∅, ↑, ↓,←,→}

▶ Poachers can also place traps. ∀j ∈ P ,

Dj = {∅, ↑, ↓,←,→,place-trap}
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The Anti-Poaching Game

Figure: Visualisation of the
Anti-Poaching Game

▶ A state s ∈ S , is described by the state of all
”active” objects in the grid.

▶ Each agent receives noisy observations of
their cell at each timestep.

▶ A poacher is
▶ rewarded for a prey recovered from a trap,
▶ and penalised if he loses a trap, or gets

captured.
The reward functions have a specific
structure
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Rewards with a Specific Structure ...

▶ Rangers have identical reward
functions: ∀i1, i2 ∈ R, ∀s,a,ba

Ri1(s,a,b) = Ri2(s,a,b)

▶ Poachers’ rewards are independent:

Rj(s,a,b) = Rj(s,a, (bj,b′−j))

▶ The game is zero sum i.e. ∀s,a,b :∑
i∈R

Ri(s,a,b) +
∑
j∈P

Rj(s,a,b) = 0

aa = (ai)i∈R, joint team action and
b = (bj)j∈P joint adversary action

Rangers

j1

j2

j3

j4

i1 i2

i3 i4

Figure: Interaction graph between agents
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Simulation Model for Transitions

Environment Transition Simulator

Receives
at,bt

Sends
(ωt+1

i ,Rti)i∈IRangers
Move

Poachers
Move
and
Detect
Traps

Rangers
Detect
Traps

Remaining
Traps
Capture
Prey

Rangers
Detect
Poach-
ers

Remaining
Poachers
Place
Traps

Figure: Transition Simulation Model for the Anti-Poaching game

Transition probabilities st dt−→ st+1 are P(st+1 | st,dt)
▶ They are difficult to calculate and store!

▶ due to the size of the state and action spaces.
▶ So, they are simulated, which allows to

▶ implement a simulator
▶ use Reinforcement Learning
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Benchmark

To facilitate the development of new algorithms
for this game,
▶ The Anti-Poaching Environment (APE) in

Python using the PettingZoo API
[Terry et al., 2021] is provided :
▶ https://forgemia.inra.fr/chip-gt/

antipoaching

▶ . . . which makes it easy to use with existing
RL libraries.
▶ notably RLlib[Liang et al., 2018], which

proposes multi-agent RL algorithms.

RL for complex sequential decision problems
October, 22, 2024 / Régis Sabbadin

p. 28

https://forgemia.inra.fr/chip-gt/antipoaching
https://forgemia.inra.fr/chip-gt/antipoaching


Concluding Remarks
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POMDP and RL for complex sequential decision problems

▶ POMDP form a ”classical” powerful representation framework for studying
sequential decision problems under uncertainty

▶ POMDP can be conveniently be modelled, using e.g. the Gymnasium API9

▶ POMDP are far harder to solve than MDP. they can be solved using
off-the-shelf RL librairies10 (including deep-RL)

▶ POMDPs can also model non- (semi-) Markovian decision processes
▶ Finally, game-theoretic extensions of POMDPs allow to model multi-agent

decision problems. Dedicated API+solution algorithms exist11!

9https://gymnasium.farama.org/
10For example, RLlib https://docs.ray.io/en/latest/rllib/
11PettigZoo:https://pettingzoo.farama.org/
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Merci !
Any questions ?
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