
An introduction to calibration of 
complex models illustrated with

fisheries models

Stéphanie Mahévas
UMR MARBEC (Marine Biodiversity

Exploitation and Conservation)
Univ Montpellier, IRD, CNRS, IFREMER, Sète

TED4LAT workshop and doctoral school - 21-25 October 2024 - Paris



Context of fisheries and fisheries modelling



APPARENT CONSUMPTION OF AQUATIC ANIMAL 
FOODS BY REGION, 1961–2021

.

• We eat more and more aquatic food.

• For sixty years, the global amount of aquatic animal foods 
available for human consumption has increased at a 
significantly higher rate (3%) than world population growth 
(1.6%)

• In 2021 : at the planet level, one human eats around 21kg/year 

FAO. 2024. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome.



CONTRIBUTION OF AQUATIC ANIMAL FOODS TO 
ANIMAL PROTEIN SUPPLY PER CAPITA, AVERAGE 
2019–2021

• Globally, aquatic animal foods supplied 15 % of animal 
proteins and 6 % of all proteins in 2021.

• The extent of their contribution varies from country to 
country  : 14 % in low-income countries, 18 % in lower-middle-
income countries, 17 % in upper-middle-income countries, and 
10 % in high-income countries.

FAO. 2024. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome.



WORLD FISHERIES AND AQUACULTURE 
PRODUCTION
1950-2022

• Global fisheries catches have been relatively stable since the 
late 1980s, and remain below 100 million tonnes and in 2022 
88% catches are from the sea

• On the other hand during the same period,  aquaculture has 
grown significantly , exceeding  fisheries catches in 2012 and 
100 million tonnes in 2014

FAO. 2024. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome.



GLOBAL TRENDS IN THE STATE OF THE WORLD’S MARINE 
FISHERY STOCKS, 1974–2021

FAO. 2024. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome.

• In 2011, biologically sustainable stocks (maximally sustainably 
fished and underfished) account for 62,3 % of the total number 
of assessed stocks 

• The % of overfished stocks still increased at the world level



GLOBAL TRENDS IN THE STATE OF THE WORLD’S 
MARINE FISHERY STOCKS, 1974–2021

FAO. 2024. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome.

• The % of overfished stocks still increased at the world level 

• Differences in proportion region by region and in trend with  
for instance slightly decrease trend of overfished stocks in 
Northeast Atlantic



Managing fishing is therefore a global challenge 

• to conserve Marine Biodiversity (human fishing activity is 
one of the most direct and effective impacting pressure on 
marine biodiversity)  and 

• to provide marine proteins to human in a sustainable way  



Annual stock assessement

Simple 
models

UncertaintiesSingle stock
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Socio-
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Complex
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The ecosystem based approach of 
fisheries management

Qutoas
of catches

Mahévas et al In prep

In the north of Europe, fisheries management is mainly dominated by quotas 
management measures that are supported on one hand by annual stock assessment 
stock by stock and on second hand by socio-ecosystem approach through Multi-annual 
Management Plan



Annual stock assessement

Simple 
models

UncertaintiesSingle stock

Multi-annual Management Plan

Socio-
ecosystem

MSE

Complex 
models

European 
Commision

Qutoas
of catches

The ecosystem based approach of 
fisheries management

In both approaches simple and complex Models are usual and necessary 
tools for providing management advice uncluding uncertainty analysis that 
are link to the multiple uncertainties in the knowledge of fisheries 
functioning.



(Mahevas & Pelletier 2004, Pelletier et al 2009) 

ISIS-Fish model describes the spatial an monthly dynamics of fisheries including
1) a management module to define fishing regulations
2) a fishing activities module to parametrize the fishing vessels dynamics
3) a population module to parametrize the fish life cycle

Short movie on https://isis-fish.org



Mahévas et al In prep

Once the model has been parameterized, management scenarios can be simulated 
accounting for uncertainty and the consequences on vessels catches and fish biomass 
can be analyzed to provide advice on fishing regulations (quotas, Marine Protected 
Area, …)



• a national research network involving
reaserchers from INRAE, IFREMER, CIRAD, 
University… 

• Animation and development of practical
methods for exploring complex models
like ISIS-fish. These methods include
sensitivity analysis, calibration, …

• https://reseau-mexico.fr



https://reseau-mexico.fr

A Practical Guide for Conducting Calibration and Decision-Making Optimisation with
Complex Ecological Models (2019)
Mahévas, S.; Picheny, V.; Lambert, P.; Dumoulin, N.; Rouan, L.; Soulié, J.-C.; Brockhoff, D.; Lehuta, S.; Le Riche, 
R.; Faivre, R.; Drouineau, H. 
Preprints 2019120249. https://doi.org/10.20944/preprints201912.0249.v1



Calibration

• Calibration  : what is calibration?
• Why calibrate a model?
• How calibrating a complex model?

15



• Calibration  : what is calibration?
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Calibration  : what is calibration ?

• In metrology: comparison with a test device that faithfully reflects 
the standard measurement.

• In statistics: method of estimating (inverse method) parameters -
given x and y=f(x), knowing y, we look for x (=f^-1(y))

• Model calibration: process of adjusting the parameters of a model 
by integrating the uncertainty of the parameters and/or of the 
model to obtain a representation of the modeled system that 
satisfies a predefined criterion

Data assimilation is a form of calibration (weather or physical model, …)



?

Calibration of linear model (2 
parameters)

Y = 5.1 + 0.35 month

Set of monthly observations

What is the best 2-parameter linear 
model to reproduce this set of 
observations?



Complex model

• 2-parameter linear model: analytical 
resolution - least-squares estimation

• Complex models
– Numerous parameters
– Numerous outputs
– Poorly understood processes The problem 

gets more 
complicated



• Why calibrate a model?
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Why calibrate a model?

• Estimate parameters that are 
difficult or impossible to 
measure

• Understand the workings of the 
system under study (when 
several hypotheses coexist)

• Give credibility to/improve a 
model for use in decision-
making, prediction, etc. 



Hake (merluccius merluccius) catchability q  ?

Catch~=q x Effort x Abundance

Hard-to-measure parameters

Spatial and temporal 
micro-scale estimation Northeast Atlantic scale



Understanding the system
Spatial and temporal dynamics of the 
hake population in the 
Northeast Atlantic 

Stock Synthesis

likelihood



BEFORE 
CALIBRATION

Improving the accuracy of model 
outputs

AFTER 
CALIBRATION

Vigier, A., Bertignac M., Mahévas S. 2022



Why is it so difficult to calibrate 
complex models?

• Number of parameters: very large exploration space (space dimension = number of parameters)

• Multi-modalities • Stochasticity

2 parameters

• Simulation time: costly evaluation for one parameter value

several minutes                     to                                   several hours

Many parameters1 parameter

F

X



• How calibrating a complex model ?



Calibration

F(X) = dist(Ysim,Yobs) = dist(M(X),Yobs)

X?
Xopt= Arg(min(dist(Ysim,Yobs))

Non-analytical F
Non-linear, multimodal,...
Costly to evaluate

Optimization - numerical approach
Optimizer = iterative algorithm 

Model
M(X)

Outputs
Ysim

Observations
Yobs

parameters
X



Calibration

Model
M(X)

Outputs
Ysim

Observations
Yobs

Parameters
X

Xi
1: M(Xi

1)= Ysim1 Xi
2: M(Xi

2)= Ysim2               … Xi
n: M(Xi

n)= Ysimn

Yobs Yobs

F1 F2 Fn < Ɛ

Xi =Xi
n

X?
Xopt= Arg(min(dist(Ysim,Yobs))



CALIBRATION
=

Optimizing a mathematical function

Inferential
statistics

Numerical
analysis

No distribution 
assumption on Y
No distribution 
assumption on X

Distribution 
assumption on Y 
No distribution 
assumption on X

Distribution 
assumption on Y 
Distribution 
assumption on X

Bayesian
statistics



PRE-PROCESSING

POST-PROCESSING

SELECTION OF 
THE ALGORITHM

Calibration implementation



Pre-processing : F and ΩX

• Clarifying the optimization issue  
Predictive capacity of the model? Parameter values? System understanding?

• List of available data: observations, expert knowledge

• List of all parameters to be estimated: limits, constraints, discrete/continuous

• List uncertainties: data, process (model)

Essential classics :



Pre-processing: : F and ΩX

F(X) = dist(Ysim,Yobs) = dist(M(X),Yobs)

ଶ

௡

௞ୀ଴

• Clarifying the optimization issue  
• List of available data: 
• List of all parameters to be estimated:
• List uncertainties: 
• Build an initial objective function: most critical point

The most common: least squares, likelihood 
Most specific: statistics for approximate Bayesian computation (ABC) (Fearnhead and Prangle, 2012)
Multi-objective: weights (Francis, 2011), 

Pareto fronts (dominance, >4 difficulty) (Deb and Sundar, 2006)

Essential classics :



M(X) M’(X’)
F(X’) = αF1(X’) + βF2(X’) + γF3(X’)

Spatial heterogeneity
Temporal variabilitySet of monthly observations

o  Area 1- Year 1 x Area 2 – Year 1 □ Area 1- Year 2



Pre-processing

Less classic essentials:
• Data mining and dimension reduction

outliers, overdispersion, correlations, etc.       and     sensitivity analysis, PCA,…

• Objective function exploration and adaptation
re-parametrization, which involves transforming the objective 

function and/or variables (Bolker et al 2013)

• Clarifying the optimization issue  
• List of available data
• List of all parameters to be estimated
• List uncertainties
• Build an initial objective function

Essential classics :



Which algorithm?



• Working with a mathematician (Rodolphe Leriche) 
and a computer scientist (Dimo Brockhoff)

• 4 large families (not so tight boundaries)
• 2 criteria :

– Space exploration approach : local versus global
– Sampling technic of parameters space : sampling versus 

model based (approximating the objective function)

Which algorithm?



F

X

unknown

F

X

unknown

“Local sampling”

“Global sampling”
M(X) – 1 parameter
6 evaluations

n n+1



F

X

unknown

F

X

unknown

“Local model” (with approximation to the objective function)

“Global model” (with approximation to the 
objective function)

n n+1



Two grids to guide selection

• Grid 1 : position the different families in the space of the 
two criteria 

• Grid 2 : help in selecting a family of optimization methods

Grid 1 : projection space Grid 2: help in selecting

with metamodel
(model-based)

without metamodel
(sampling-based)

More Global

More local

Number of model 
runs

Number of 
parameters

10^6 

100
2                    1000
I                       I



Two grids to guide selection

• Grid 1 : position the different families in the space of the 
two criteria 

• Grid 2 : help in selecting a family of optimization methods

Grid 1 : projection space Grid 2: help in selecting

with metamodel
(model-based)

without metamodel
(sampling-based)

10^6 

100
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Grid : Parameters/Number of runs

Who can do more can do less

EGO : efficient global optimisation - Jones et al. (1998)
DIRECT : Dividing RECTangles – Jones et al 1993

EDA : Estimationof Distribution Algorithms (Larranag and Loranzo 2001)
SBB : Spatial Branch and Bound (Horst a,d Tuy 2013)
ABC Approximate Bayesian Computation (Csillery et al 2010)

SA : Simulated Annealing – recuit simule (Van Laarhoven et al 1987)
CMA-ES :Covariance Matrix Adaptation Evolution Strategy (Hansen et al 2003)
PSO : Particle swarn optimisation (Kennedy 2011)
MADS : Mesh Adaptative Direct Search (Audet et al 2006)
Nelder-Mead (Nelder et al 1965)

NEWUOA : (Powell 2006) 
L-BFGS-B : extension of Broyden-Fletcher-Goldfarb-Shanno 1987

Non-solvable linear problem

In general, unsolvable
optimization problem



EGO : efficient global optimisation - Jones et al. (1998)
DIRECT : Dividing RECTangles – Jones et al 1993

EDA : Estimationof Distribution Algorithms (Larranag and Loranzo 2001)
SBB : Spatial Branch and Bound (Horst a,d Tuy 2013)
ABC Approximate Bayesian Computation (Csillery et al 2010)

SA : Simulated Annealing – recuit simule (Van Laarhoven et al 1987)
CMA-ES :Covariance Matrix Adaptation Evolution Strategy (Hansen et al 2003)
PSO : Particle swarn optimisation (Kennedy 2011)
MADS : Mesh Adaptative Direct Search (Audet et al 2006)
Nelder-Mead (Nelder et al 1965)

NEWUOA : (Powell 2006) 
L-BFGS-B : extension of Broyden-Fletcher-Goldfarb-Shanno 1987

A lot of parameters

Few parameters, few runs

Few parameters, more runs

Grid : Parameters/Number of runs



Grid 1 : Space explo./sampling

• Algorithms without 
metamodel : family of 
solutions around the optimum 
(approximate form of the 
objective function and 
parameter covariances, 
distribution, etc.)

• Algorithms with 
metamodel : first- and 
second-order derivatives of the 
function around the optimum 
(optimum?, identifiability?, 
confidence intervals?)

• Global exploration algorithms: approximate 
form of the objective function on the variable space 
(accuracy will depend on the balance between 
exploration and intensification phases)



Post-processing

• Assessing optimization quality
– convergence: “are we far from the minimum?” 
– global/local: “has the algorithm dipped into the local trough?”
– parameter identifiability: “do several solutions give the same 

minimum?”

• Solving multi-criteria
• Stop or again?



For all algorithms

At each iteration, the algorithm calculates a set of solutions and the 
associated:

the trace of the algorithm in the space of X and in the space of F
F

X

• On X :  Oscillations, distances between solutions, dominant directions, frequencies,      
• On F: Series of best solutions, (e.g. Maier et al 2014)
• Sensitivity to initial points
• Sensitivity analysis around the solution (e.g. Kleijnen and Sargent 2000)
• Understanding the properties of F: holes, barriers, plateaus, correlations (e.g. 

Wright 1932)

Objective function reformulation
Reparameterization 
Change of algorithms or control parameters



• Algorithms with metamodel: 
an approximation of the function, first- and 

second-order derivatives of the function around 
the optimum (optimum?, identifiability?, 
confidence intervals?) - Hessian (e.g. Gill et al., 
1981)

Depending on the family of algorithms

with metamodel
(model-based)

without metamodel
(sampling-based)

More Global

More local



Depending on the family of algorithms

with metamodel
(model-based)

without metamodel
(sampling-based)

More Global

More local

• Algorithms without metamodel : 
give an optimum but also a family of solutions 
around the optimum (approximate the form 
of the objective function and parameter 
covariances, distribution ...) (e.g. Kendall and 
Nichols 2002)



Depending on the family of algorithms

with metamodel
(model-based)

without metamodel
(sampling-based)

More Global

More local
• Algorithms with global exploration: 

capture an approximate form of the objective 
function on the variable space (accuracy will depend 
on the balance between the exploration and 
intensification phases)



Traceability, reproducibility and 
archiving

ODDO : Overview Description and Details of 
Optimization
In line with the famous ODD from Grimm et al,
2010





In brief
Calibration : not such a linear approach ODDO : Overview, Design, Details of Optimisation

(ODD Grimm 2010)



Recommendations

PRE-PROCESSING

POST-PROCESSING

SELECTION OF 
THE ALGORITHM

mathematicians of 
numerical analysis / 
computer scientists

ODDO in Supplementary materials

(slow science academy 2010)
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