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Introduction

Randomwalks represent a valuable mathematical tool for describ-

ing how behavior at the microscopic level can influence macro-

scopic phenomena in a multiscale framework.

Quantum walks represent quantum counterpart of random walks

and serve as a valuable tool for illustrating the advantages of quan-

tum approaches.

Quantum Finance is a newly developed interdisciplinary subject

that directly take advantages on quantum properties.

Aims: Providing a clear, engaging, and straightforward explanation

of quantum computing performances exploiting the transition from

the classical to the quantum model of random walks. This brief re-

view includes key definitions and properties, followed by a demon-

stration of a quantum model for financial applications.

Figure 1. The flow chart outlines the progression of the main themes connecting key concepts.

RandomWalks

A simple random walk in one dimension can be defined as:

Sn = x +
n∑
j=1

Xj

An important result is the Local Central Limit Theorem, which

states that, as the number of steps n increases, the distribution
of the walk converges to a normal distribution:

Pn(X) ≈ 1√
2πnσ2

e
−(x−n〈x〉)2

2nσ2

This theorem indicates that, for large n, the behavior of the random
walk can be approximated by a Gaussian distribution, where σ2 is
the variance of the step distribution that is σ2 = x.
In addition to random walks, we can consider continuous-time
stochastic processes like Brownian Motion (B(t)). B(t) can be de-
scribed as the limit of a random walk. Its key properties are:
B(0) = 0
B(t) has independent increments (Markovian Process).

B(t) is a Martingale (expectation value of the final value is the current value)

B(t) ∼ N(0, t)

A related process is theGeometric BrownianMotion (GBM). It can

be defined as:

dX = µdt + σdBt

where µ is the drift and σ is the volatility. It is widely used in finance
for modeling stock prices. GBM is defined in logarithmic scale so

it ensures that the modeled quantity remains non-negative:

Y ∼ N(µ, σ2), X = eY and X = GBM

Quantum Computing

Before introducing the quantum analogue of random walks, it is

essential to understand the basic concepts of quantum

computing. The key difference is the use of qubits rather than

classical bits:

|ψ〉 = α|0〉 + β|1〉

where α and β are complex numbers, and |α|2 + |β|2 = 1. This
superposition allows quantum computers to process many

possibilities simultaneously, exploiting the phenomenon of

quantum parallelism.

The evolution of qubits is governed by quantum gates, which are

analogous to classical logic gates but operate according to unitary

transformations. Main ones are:

Hadamard Gate

H = 1√
2

(
1 1
1 −1

)
Table 1. Equal superposition

Rotations about X-Axis

Rx(θ) = cos
(
θ
2

)
I − i sin

(
θ
2

)
X

Pauli X-Gate = X = Rx(π) =
(

0 1
1 0

)
Table 2. Bit Flip

Rotations about Y-Axis

Ry(θ) = cos
(
θ
2

)
I − i sin

(
θ
2

)
Y

Pauli Y-Gate = Y = Ry(π) =
(

0 −i
i 0

)
Table 3. Bit Flip + Phase Flip

Rotations about Z-Axis

Rz(θ) = cos
(
θ
2

)
I − i sin

(
θ
2

)
Z

Pauli Z-Gate = Z = Rz(π) =
(

1 0
0 −1

)
Table 4. Phase Flip

Toffoli Gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Table 5. Toffoli Gate: Controlled-NOT gate

Once the mathematical formulations of an algorithm are

established, these elementary gates are employed in quantum

circuits to translate theoretical models into practical solutions.

QuantumWalk

Quantum walks (QW) represent the quantum analogue of classical

randomwalks, introduced to explore structured - search problems.

QW operator is:

Un = [T (R ⊗ I)]n

Quantum Coin R: it is spanned by |↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
Translation Operator: T = |↑〉 〈↑| ⊗

∑
j |xj+1〉 〈xj| + |↓〉 〈↓| ⊗

∑
j |xj−1〉 〈xj|

QWs have practical applications in areas such as graph traversal,

where they improve hitting, commute, and mixing times compared

to classical algorithms.

Figure 2. There are several different paths to reach the same position: the

classical approach is determined step-by-step; quantum walk creates a

superposition of all possible states and each position occurs with a certain

probability value.

Figure 3. Increment and Decrement steps on IBM Composer: The qubit q[4]

serves as the control qubit, while the remaining qubits (q[0], q[1], q[2], and q[3])

are the target qubits, representing the walk. By applying a Hadamard gate to q[4],

we immediately create a superposition of states. Notably, no explicit initial state

is provided for the qubits. During the increment phase (executed through a

cascade of Toffoli gates from q[4] to q[0]), it is essential to apply a NOT gate to

q[4] afterward. This resets the superposition on the control qubit, allowing us to

proceed with the decrement phase (decreasing from q[0] to q[3]). The walk is

iterated twice, followed by measurements on q[0], q[1], q[2], and q[3]. We avoid

measuring q[4] since doing so would collapse the superposition and is

unnecessary for this operation. (The I gates are identity gates used for clarity in

visualization).

(a) Initial state: |Ψ0〉 = |↑〉 ⊗ |0〉
(b) Initial state symmetric:

|Ψsym〉 = 1√
2(|↑〉 + i |↓〉)

Figure 4. These distributions represent two distinct cases, highlighting the key

differences compared to their classical counterparts. In Figure 3b, while the mean

remains centered, similar to a normal distribution, the variance exhibits

significantly different behavior. Classical probability distribution has ’slower’

variance which indicates that the quantum distribution has data points more

spread out around the mean, signifying greater variability or uncertainty in the

quantum model: V ar(t)QW ' 0, 54t2.

QWs offer a detailed way to understand how quantum computers

perform computations. They require a specific graph structure for

the walker to move through. This becomes an unnecessary con-

straint, especially in finance, as unstructured search algorithms such

as Quantum Amplitude Estimation (QAE) can be more efficient and

versatile.

Stochastic Processes Accelerated by Quantum
Walk-based Search

QWs are a useful tool for generalizing key properties of quantum

computing but there exist simpler solutions that can be used

when dealing with unstructured problems i.e. QAE. Let introduce

a quantum solution for an important financial instrument: option.

The quantum option pricing model utilizes quantum computing

to accelerate the pricing of options. We choose to consider a

European Call Option. When beginning this process, we choose

the Black-Scholes method, which assumes a lognormal

distribution of possible future asset prices. A new challenge now

arises: preparing a quantum state using qubits, where each qubit

represents an asset, and its value and associated probability are

determined by the lognormal distribution previously given. This

presented a difficult research challenge for which we still need to

find a more efficient solution. However, a promising approach can

facilitate the loading of generic probability distributions, implicitly

provided by data samples, into quantum states (see figure 5a):

|0〉n → |ψ〉n =
N−1∑
i=0

√
pi |i〉n

We require a Strike Price Comparator that can decide which

assets will contribute to the value of option. The resulting state is

the following:

|ψ〉n |0〉 → |φ1〉 =
∑
i<K

√
pi |i〉n |0〉 +

∑
i≤K

√
pi |i〉n |1〉

The qubit’s amplitude represents the probability of the option

being ”in the money” (when the asset price exceeds the strike

price).

To implement the payoff function in a quantum circuit, we need

to encode it into controlled rotations, where the angle of rotation

of a state depends on the difference value. And we end up with:

|φf〉 =
∑
i<K

√
pi |i〉n (cos(θi) |0〉 + sin(θi) |1〉

This state encloses the most relevant probability amplitude about

asset prices at maturity and so, QAE will be applied on this as

initial state. We find that QAE converges very quickly to the

result.
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(a) Asset prices loaded and

represented on qubit states.
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Figure 5. a represents the probability distribution derived from the lognormal

distribution and loaded by qGAN model. Figure 5b illustrates the comparison

between the estimation errors of (QAE) and Monte Carlo methods. The

estimation error refers to the difference between the value estimated by a

method and the true or expected value of the option. In this case, the plot shows

how the estimation error decreases as the number of samples increases for both

methods. The key takeaway is that QAE demonstrates an O(M−1) convergence,
meaning that the estimation error decreases quadratically with the number of

samples, while Monte Carlo simulations follow an O(M−1/2) rate, indicating a
slower reduction in error.

Final remarks

We have explored how quantum computers perform cal-
culations using random walks and their quantum analogs.
We demonstrated how quantum algorithms can solve struc-
tured problems and that it generalizes the unstructured-search
method of QAE, which offers a powerful solution for financial
challenges. We concluded with a specific case—option pric-
ing—by introducing how a European call option can be priced
using quantum techniques.

3 The results demonstrated that quantum approach is quadratically faster

than classical algorithms.

3 Quantummodel offers a new probability distribution that encloses a higher

variance and then values are more spread out around the mean.

3 In quantum option pricing, in its simplest terms (European call options),

QAE reduces the number of queries needed for accurate payoff estimation.

8 While promising, hardware limitations in current quantum devices still

present challenges. Ongoing advancements in quantum computing are es-

sential for fully realizing its potential in financial applications.
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