

Paris

Clermont-Ferrand

Using viability theory for managing environmental systems

Jean-Denis Mathias et al.

INRAE, Laboratoire d'Ingénierie pour les Systèmes Complexes, 9 avenue des landais, 63170 Aubière, France.

MATHIAS J-D. et al

From control engineering to environmental management: some insights

Example: inverted pendulum

Stepan Ozana, 2018, https://www.youtube.com/watch?v=meMWfva-Jio&t=18s

From control engineering to environmental management: some insights

From control engineering to environmental management: some insights

Control engineering in the case of social-ecological systems

Example 1: managing social-ecological systems

Knowledge and decision-making

Example 1: managing social-ecological systems

Observability and controllability of social-ecological systems

Example 2: the safe operating space as a control problem

Maintaining Earth system in a « desirable » state...

safe operating space

- Defining desirability from properties of interest
- Defining constraints or limits

Controlled dynamic problem

- Defining the Earth dynamics
- Defining our « control » as our capacity of action

https://chrisriedy.me/2014/01/28/living-in-the-doughnut-of-sustainability/

Example 2: the safe operating space as a control problem

Recovering a desirable state of Earth system 🔿 concept of résilience

INRA

9

MATHIAS J-D. et al

Example 3: clarifying the concept of resilience (with uncertainty)...

Elaine Thompson / The Associated Press

Some difficulties to characterize uncertain dynamics...

How to manage daily variations and extreme events?

II. Viability theory

III. Case of lake eutrophication

IV. Conclusions

Case of lake eutrophication

Lake Bourget (France)

rce : CISALB - Observatoire écologique 2012

Impact the quality of the water in terms of clarity, presence of cyanobacteria...

Impact on the environment and on the local economy (tourism, agriculture...)

There is a need of (effective) tools for helping policymakers in their decision process.

Issue 1: Properties of interest

Example of lake eutrophication

Lake Bourget

La teneur en phosphates [en µg/L

Example of a property of interest:

« Having a phosphorus concentration lower than 10 µg/L»

No optimization, complying with a constraint

Difficulties to clearly formalize the properties of interest with stakeholders

Issue 2: Dynamical framework

15

Example of lake eutrophication

Lake Bourget

La teneur en phosphates (en µg/L)

Example of a propertie of interest:

« Having a phosphorus concentration lower than 10 µg/L»

Evolution in time

Need to describe the evolution of the property of interest (here P(t))

MATHIAS J-D. et al

Resilience 1.0

MATHIAS J-D. et al

2024, october, 21-25 🐼

Resilience 2.0

MATHIAS J-D. et al

2024, october, 21-25 🐼 TED4LAT

II. Viability theory

III. Case of lake eutrophication

IV. Conclusions

Using viability theory for operationalizing resilience

- 1. Finding the set of points enabling to keep the properties of interest during a given time horizon. This set will be called the *viability kernel* (Aubin, 1991)
- 2. Finding the resilient pathways that enable to recover the properties of interest in the viability kernel (resilience 2.0)

Viability kernel

4 properties of interest:

« Having a minimum and a maximum values of phosphorous concentration » (ecological issues)

« Having a minimum and a maximum values of phosphorous inputs » (economic issues)

Viability kernel

4 properties of interest:

« Having a minimum and a maximum values of phosphorous concentration » (ecological issues)

« Having a minimum and a maximum values of phosphorous inputs » (economic issues)

Viability kernel

4 properties of interest:

« Having a minimum and a maximum values of phosphorous concentration » (ecological issues)

« Having a minimum and a maximum values of phosphorous inputs » (economic issues)

 $Viab(\tau)$ is the set of initial points (in **K**) such as there is, at least, a policy that enables to stay in \boldsymbol{K} during the time horizon τ

 $\operatorname{Viab}(\tau) = \{ x_0 \in K \mid \exists f \in F(\tau), \forall t \leq \tau, x_t = g_f(t, x_0) \in K \}$

Resilience 2.0

Case of an (extreme) event

- Case 1: economic crisis;
- Case 2: pollution

Case 1: resilience 1.0 but not resilience 2.0; Case 2: resilience 2.0 (guarantee of keeping the properties): this is the basin of attraction of $Viab(\tau)$ (PhD Sophie Martin, european project PATRES (2007 - 2010))

Case of variations in phosphorous inputs

We don't have anymore a deterministic response... .. but a probabilistic response!

2024, october, 21-25 🐼 TED4LAT

Stochastic viability kernel

 $Viab(\beta, \tau)$ is the set of initial points (in **K**) such as there is at least a policy that enables to stay in **K** for a time τ , with a probability higher than β

 $\operatorname{Viab}(\beta,\tau) = \{ x_0 \in K \mid \exists f \in F(\tau), \ \mathbb{P}(\forall t \in [0,\tau], x_t = g_f(t,x_0) \in K) \ge \beta \}$

2024, october, 21-25 🐼 TED4LAT

Resilience 2.0, stochastic case: probability of resilience

The probability of resilience corresponds to the probability to come back in $Viab(\beta, \tau)$ for given time horizonT< τ (PhD of Charles Rougé).

MATHIAS J-D. et al

II. Viability theory

III. Case of lake eutrophication

IV. Conclusions

Lake eutrophication

2024, october, 21-25 🐼 TED4LAT

III. Case of lake eutrophication

Properties of interest?

3 properties of interest:

« Having a maximum values of phosphorous concentration » (ecological issues)

 Having a minimum and a maximum values of phosphorous inputs » (economic issues)

III. Case of lake eutrophication

Stochastic viability kernel

Lake Aydat $\frac{dP}{dt} = -P + L^* + \varepsilon + r$ $P^{8} + 1$ output + input + sediments $\frac{dL^*}{dt} = u_{t}$ $u \in [U^{min}, U^{max}]$ We can act on the inputs

3 properties of interest:

 « Having a maximum values of phosphorous concentration » (ecological issues)

« Having a minimum and a maximum values of phosphorous inputs » (economic issues)

Time horizon= 100, $\mathcal{E}=N(0,0.2)$

2024, october, 21-25 🐼 TED4LAT

III. Case of lake eutrophication

Resilience

MATHIAS J-D. et al

II. Viability theory

III. Case of lake eutrophication

IV. Conclusions

IV Conclusion

Take-home messages

Resilience 1.0 vs resilience 2.0

- Recover properties of interest (1.0) and keeping it (2.0)

Using the viability kernel (through the viability theory)

Case of variations (probabilistic approach)

- Probability of keeping a given property (for a given time horizon);
- Probability of recovering in this robust set (for a given time horizon).

Formalization of concepts

- Vulnerability; Flexibility;
- Reliability; Capacity of adaptation.

Perspectives

Using methods from control engineering for managing social-ecological systems

IV Conclusion

Resilience 1.0 or 2.0?

Perspectives

Management of social-ecological systems

Improving algorithms D

MATHIAS J-D. et al

2024, october, 21-25 🐼 TED4LAT

Observabilité et controllabilité de systèmes socio-écologiques et PID

Cas « changement climatique »

Dynamique:

 $K(t + \Delta t) = 1.25 \frac{1 - a(t)}{1 + d(t)} p(t) K(t)^{0.3} l(t)^{0.7} + 0.9^5 K(t)$ $C(t) = [1 - \mu(t)] p(t) K(t)^{0.3} l(t)^{0.7} + 0.9120 C(t - \Delta t) + 70$

Objectif: 350ppm

Observation: 1/ le CO2 OU 2/ le coût économique

Erreur: 1/ [C02]-350 OU 2/ Coût économique

 $\mu(t) = \mu(t-1) + \gamma_{P} e(t-1) + \gamma_{I} \sum e(t-i\Delta t) \Delta t + \gamma_{d} (e(t)-e(t-1)) / \Delta t$ Contrôle:

INRAe

Observabilité et controllabilité de systèmes socio-écologiques et PID

Cas « changement climatique »

a - Errors, reference case

b - Co2 and economic dynamics

